2021年山东省济南市中考数学试卷
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2021年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.(4分)9的算术平方根是( )A.3B.﹣3C.±3D.2.(4分)下列几何体中,其俯视图与主视图完全相同的是( )A.B.C.D.3.(4分)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km.将数字55000000用科学记数法表示为( )A.0.55×108B.5.5×107C.5.5×106D.55×1064.(4分)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )A.45°B.60°C.75°D.80°5.(4分)以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.6.(4分)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a+b>0B.﹣a>bC.a﹣b<0D.﹣b<a7.(4分)计算的结果是( )A.m+1B.m﹣1C.m﹣2D.﹣m﹣28.(4分)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“第23页(共23页),低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )A.B.C.D.9.(4分)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是( )A.B.C.D.10.(4分)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A.188mB.269mC.286mD.312m11.(4分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )A.BE=DEB.DE垂直平分线段ACC.D.BD2=BC•BE12.(4分)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是( )A.﹣2≤n′≤2B.1≤n′≤3C.1≤n′≤2D.﹣2≤n′≤3二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案)13.(4分)因式分解:a2﹣9= .第23页(共23页),14.(4分)如图,在两个同心圆中,四条直径把大圆分成八等份,若将飞镖随机投掷到圆面上,则飞镖落在黑色区域的概率是 .15.(4分)如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE= .16.(4分)关于x的一元二次方程x2+x﹣a=0的一个根是2,则另一个根是 .17.(4分)漏刻是我国古代的一种计时工具.据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用.小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位h(cm)是时间t(min)的一次函数,如表是小明记录的部分数据,其中有一个h的值记录错误,请排除后利用正确的数据确定当h为8cm时,对应的时间t为 min.t(min)…1235…h(cm)…2.42.83.44…18.(4分)如图,一个由8个正方形组成的“C”模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为 .第23页(共23页),三、解答题(本大题共9个小题,共78分.答应写出文字说明证明过程或演算步骤)19.(6分)计算:.20.(6分)解不等式组:并写出它的所有整数解.21.(6分)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE=∠CBF.求证:DE=DF.22.(8分)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:方便筷使用数量在5≤x<15范围内的数据:5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.不完整的统计图表:方便筷使用数量统计表组别使用数量(双)频数A0≤x<514B5≤x<10C10≤x<15D15≤x<20aEx≥2010合计50请结合以上信息回答下列问题:(1)统计表中的a= ;(2)统计图中E组对应扇形的圆心角为 度;(3)C组数据的众数是 ;调查的50名居民5月份使用方便筷数量的中位数是 ;(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.第23页(共23页),23.(8分)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.(1)求证:∠DAB=2∠ABC;(2)若tan∠ADC=,BC=4,求⊙O的半径.24.(10分)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?25.(10分)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形AB﹣PQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.第23页(共23页),26.(12分)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.27.(12分)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.第23页(共23页),2021年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.(4分)9的算术平方根是( )A.3B.﹣3C.±3D.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.(4分)下列几何体中,其俯视图与主视图完全相同的是( )A.B.C.D.【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;正方体的主视图、俯视图都是正方形,因此选项C符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;故选:C.3.(4分)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km.将数字55000000用科学记数法表示为( )A.0.55×108B.5.5×107C.5.5×106D.55×106【解答】解:将55000000用科学记数法表示为5.5×107.故选:B.4.(4分)如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为( )A.45°B.60°C.75°D.80°【解答】解:∵AB∥CD,∠A=30°,∴∠ADC=∠A=30°,∠CDE=∠DEB,∵DA平分∠CDE,∴∠CDE=2∠ADC=60°,∴∠DEB=60°.故选:B.5.(4分)以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )第23页(共23页),A.B.C.D.【解答】解:A.是轴对称图形,又是中心对形,符合题意;B.是轴对称图形,不是中心对称图形,不符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,又不是中心对称图形,不符合题意.故选:A.6.(4分)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a+b>0B.﹣a>bC.a﹣b<0D.﹣b<a【解答】解:∵b<0<a,且|b|>|a|∴a+b<0,选项A错误;﹣a>b,选项B正确;a﹣b>0,选项C错误;﹣b>a,选项D错误;故选:B.7.(4分)计算的结果是( )A.m+1B.m﹣1C.m﹣2D.﹣m﹣2【解答】解:原式====m﹣1.故选:B.8.(4分)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )A.B.C.D.【解答】解:把“垃圾分类”“文明出行”“低碳环保”三个宣传队分别记为A、B、C,画树状图如下:共有9种等可能的结果,小华和小丽恰好选到同一个宣传队的结果有3种,∴小华和小丽恰好选到同一个宣传队的概率为=,故选:C.第23页(共23页),9.(4分)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx﹣k的图象大致是( )A.B.C.D.【解答】解:∵反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象在第一、三、四象限,故选:D.10.(4分)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A.188mB.269mC.286mD.312m【解答】解:由题意得:∠N=43°,∠M=35°,AO=135m,BO=AO﹣AB=95m,在Rt△AON中,tanN==tan43°,∴NO=≈150m,在Rt△BOM中,tanM==tan35°,∴MO=≈135.7(m),∴MN=MO+NO=135.7+150≈286(m).故选:C.11.(4分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )第23页(共23页),A.BE=DEB.DE垂直平分线段ACC.D.BD2=BC•BE【解答】解:由题意可得∠ABC=90°,∠C=30°,AB=AD,AP为BD的垂直平分线,∴BE=DE,∴∠BAE=∠DAE=30°,∴△AEC是等腰三角形,∵AB=AD,AC=2AB,∴点D为AC的中点,∴DE垂直平分线段AC,故选项A,B正确,不符合题意;在△ABC和△EDC中,∠C=∠C,∠ABC=∠EDC=90°,∴△ABC∽△EDC,∴,∵,DC=,∴,∴,∴,故选项C错误,符合题意;在△ABD中,∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°,∴∠DBE=∠BDE=30°,在△BED和△BDC中,∠DBC=∠EBD=30°,∠BDE=∠C=30°,∴△BED∽△BDC,∴,∴BD2=BC•BE,故选项D正确,不符合题意.故选:C.12.(4分)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是( )A.﹣2≤n′≤2B.1≤n′≤3C.1≤n′≤2D.﹣2≤n′≤3【解答】解:由题意可知,第23页(共23页),当m≥0时,n′=﹣m2+4m+2﹣4=﹣(m﹣2)2+2,∴当0≤m≤3时,﹣2≤n′≤2,当m<0时,n′=m2﹣4m﹣2=(m﹣2)2﹣6,∴当﹣1≤m<0时,﹣2≤n′≤3,综上,当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是﹣2≤n′≤3,故选:D.二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案)13.(4分)因式分解:a2﹣9= (a+3)(a﹣3) .【解答】解:a2﹣9=(a+3)(a﹣3).14.(4分)如图,在两个同心圆中,四条直径把大圆分成八等份,若将飞镖随机投掷到圆面上,则飞镖落在黑色区域的概率是 .【解答】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案为:.15.(4分)如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE= 18° .【解答】解:∵五边形ABCDE为正五边形,∴∠EAB==108°,∵四边形AMNP为正方形,∴∠PAM=90°,∴∠PAE=∠EAB﹣∠PAM=108°﹣90°=18°.故答案为:18°.16.(4分)关于x的一元二次方程x2+x﹣a=0的一个根是2,则另一个根是 ﹣3 .【解答】解:设另一个根为m,由根与系数之间的关系得,m+2=﹣1,∴m=﹣3,故答案为﹣3,17.(4分)漏刻是我国古代的一种计时工具.据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用.小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位h(cm)是时间t(min)的一次函数,如表是小明记录的部分数据,其中有一个h的值记录错误,请排除后利用正确的数据确定当h为8cm时,对应的时间t为 15 min.t(min)…1235…第23页(共23页),h(cm)…2.42.83.44…【解答】解:设一次函数的表达式为h=kt+b,t每增加一个单位h增加或减少k个单位,∴由表可知,当t=3时,h的值记录错误.将(1,2.4)(2,2.8)代入得,,解得k=0.4,b=2,∴h=0.4t+2,将h=8代入得,t=15.故答案为:15.18.(4分)如图,一个由8个正方形组成的“C”模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为 .【解答】解:连接EG,则∠OEP=90°,第23页(共23页),由题意得,小正方形的边长为1,∴OP===,∵四边形ABCD是矩形,∴∠B=∠C=∠A=90°,∠MQP=90°,∴∠BMQ=∠CQP=90°﹣∠MQP,同理∠EPO=∠CQP=90°﹣∠QPC,∴∠BMQ=∠EPO,又∠OEP=∠B=90°,∴△OEP∽△QBM,∴===,∴BM===,QB===,∵∠B=∠A=90°,∠NMQ=90°,∴∠BMQ=∠ANM=90°﹣∠AMN,在△QBM和△MAN中,,∴△QBM≌△MAN(AAS),∴AM=QB=,∴AB=BM+AM=+=.故答案为:.三、解答题(本大题共9个小题,共78分.答应写出文字说明证明过程或演算步骤)19.(6分)计算:.【解答】解:=4+1+3﹣2×1=8﹣2=6.20.(6分)解不等式组:并写出它的所有整数解.第23页(共23页),【解答】解:,解不等式①,得x≥﹣2,解不等式②,得x<1,∴不等式组的解集为﹣2≤x<1,∴不等式组的整数解有﹣2、﹣1、0.21.(6分)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE=∠CBF.求证:DE=DF.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,AB=BC,∠A=∠C,∴∠ABE=∠CBF,∴△ABE≌△CBF(ASA),∴AE=CF,∴AD﹣AE=CD﹣CF,∴DE=DF.22.(8分)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:方便筷使用数量在5≤x<15范围内的数据:5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.不完整的统计图表:方便筷使用数量统计表组别使用数量(双)频数A0≤x<514B5≤x<10C10≤x<15D15≤x<20aEx≥2010合计50请结合以上信息回答下列问题:(1)统计表中的a= 9 ;(2)统计图中E组对应扇形的圆心角为 72 度;(3)C组数据的众数是 12 ;调查的50名居民5月份使用方便筷数量的中位数是 10 ;(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.第23页(共23页),【解答】解:(1)方便筷使用数量在5≤x<15范围内的数据有17个,∴a=50﹣14﹣17﹣10=9,故答案为:9;(2)360°×=72°,故答案为:72;(3)将方便筷使用数量在10≤x<15范围内的数据按从小到大的顺序排列为10,10,11,12,12,12,13,由上述数据可得C组数据的众数是12,B组的频数是10,C组的频数为7,D组的频数为9,∴第25,26个数均为10,∴调查的50名居民5月份使用方便筷数量的中位数是=10.故答案为:12,10;(4)2000×=760(人),答:估计该社区2000名居民5月份使用方便筷数量不少于15双的人数为760人.23.(8分)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.(1)求证:∠DAB=2∠ABC;(2)若tan∠ADC=,BC=4,求⊙O的半径.【解答】(1)证明:连接OC,∵EC是⊙O的切线,∴OC⊥CE,∵DE⊥CE,∴OC∥DE,∴∠DAB=∠AOC,第23页(共23页),由圆周角定理得:∠AOC=2∠ABC,∴∠DAB=2∠ABC;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,由圆周角定理得:∠ABC=∠ADC,∴tan∠ABC=tan∠ADC=,即=,∵BC=4,∴AC=2,由勾股定理得:AB===2,∴⊙O的半径为.24.(10分)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【解答】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.25.(10分)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形AB﹣PQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.第23页(共23页),【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,得﹣3=m,解得:m=﹣2,∴A(﹣2,﹣3),∴k=﹣2×(﹣3)=6,∴反比例函数解析式为y=,由,得或,∴点B的坐标为(2,3);(2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,∴BE∥CF,∴△DCF∽△DBE,∴=,∵BC=2CD,BE=3,∴=,∴=,∴CF=1,∴C(6,1),作点B关于y轴的对称点B′,连接B′C交y轴于点G,则B′C即为BC+GC的最小值,∵B′(﹣2,3),C(6,1),∴B′C==2,∴BC+GC=B′C=2;(3)存在.理由如下:①当点P在x轴上时,如图2,设点P1的坐标为(a,0),过点B作BE⊥x轴于点E,∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,∴△OBE∽△OP1B,∴=,∵B(2,3),第23页(共23页),∴OB==,∴=,∴a=,∴点P1的坐标为(,0);②当点P在y轴上时,过点B作BN⊥y轴于点N,如图2,设点P2的坐标为(0,b),∵∠ONB=∠P2BO=90°,∠BON=∠P2OB,∴△BON∽△P2OB,∴=,即=,∴b=,∴点P2的坐标为(0,);综上所述,点P的坐标为(,0)或(0,).26.(12分)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;第23页(共23页),②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.【解答】解:(1)如图1,当α=180°时,点E在线段BC上,∵BD=BC,∴DE=BD=BC,∴BD=DE=EC,∵△CEF是等腰直角三角形,∴∠CEF=∠BAC=90°,∵∠ECF=∠BCA=45°,∴△ABC∽△FEC,∴==,∴==,∵BC=AC,∴==,∴=,即==,∴=•=×=;(2)①=仍然成立.理由如下:如图2,∵△CEF是等腰直角三角形,∴∠ECF=45°,=,∵在△ABC中,∠BAC=90°,AB=AC,∴∠BCA=45°,=,∴∠ECF=∠BCA,=,∴∠ACF+∠ACE=∠BCE+∠ACE,∴∠ACF=∠BCE,∵=,∴△CAF∽△CBE,∴==,∴=仍然成立.②四边形AECF是平行四边形.第23页(共23页),理由如下:如图3,过点D作DG⊥BF于点G,由旋转得:DE=BD=BC,∵∠BGD=∠BFC=90°,∠DBG=∠CBF,∴△BDG∽△BCF,∴===,∵BD=DE,DG⊥BE,∴BG=EG,∴BG=EG=EF,∵EF=CF,∴CF=BG=BF,由①知,AF=BE=BG=CF=CE,∵△CAF∽△CBE,∴∠CAF=∠CBE,∠ACF=∠BCE,∵∠CEF=∠CBE+∠BCE=45°,∠BCE+∠ACE=∠ACB=45°,∴∠CBE=∠ACE,∴∠CAF=∠ACE,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.27.(12分)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;第23页(共23页),(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:,解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C(1,4).(2)设AC交y轴于点F,连接DF,过点C做CE⊥x轴于点E,∵A(﹣1,0),C(1,4),∴OA=1,OE=1,CE=4.∴OA=OE,AC==2.∵FO⊥AB,CE⊥AB,∴FO∥CE,∴OF=CE=2,F为AC的中点.∵△DAC是以AC为底的等腰三角形,∴DF⊥AC.∵FO⊥AD,∴△AFO∽△FDO.∴.∴.第23页(共23页),∴OD=4.∴D(4,0).设直线CD的解析式为y=kx+m,∴,解得:.∴直线CD的解析式为y=﹣.∴,解得:,.∴P().(3)过点P作PH⊥AB于点H,如下图,则OH=,PH=,∵OD=4,∴HD=OD﹣OH=,∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x,AE=y,则CE=2﹣y.∵DA=DC,∴∠DAB=∠C.∵∠CAB+∠AEF+∠AFE=180°,∠AEF+∠PEF+∠CEP=180°,又∵∠PEF=∠CAB,∴∠CEP=∠AFE.∴△CEP∽△AFE.第23页(共23页),∴.∴.∴x=﹣+y=﹣+.∴当y=时,x即AF有最大值.∵OA=1,∴OF的最大值为﹣1=.∵点F在线段AD上,∴点F的横坐标m的取值范围为﹣1<m≤.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/9/147:32:10;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第23页(共23页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)