首页

2019年山东省济南市中考数学试卷(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

剩余20页未读,查看更多内容需下载

2019年山东省济南市中考数学试卷一、选择题(每小题4分,共48分)1.﹣7的相反数是(  )A.﹣7B.﹣C.7D.12.以下给出的几何体中,主视图是矩形,俯视图是圆的是(  )A.B.C.D.3.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为(  )A.0.1776×103B.1.776×102C.1.776×103D.17.76×1024.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为(  )A.20°B.35°C.55°D.70°5.实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是(  )A.a﹣5>b﹣5B.6a>6bC.﹣a>﹣bD.a﹣b>06.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是(  )A.赵爽弦图B.笛卡尔心形线 C.科克曲线D.斐波那契螺旋线7.化简+的结果是(  )A.x﹣2B.C.D.8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是(  )A.9.7m,9.9mB.9.7m,9.8mC.9.8m,9.7mD.9.8m,9.9m9.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是(  )A.B.C.D.10.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为(  )A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π 11.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北编东53°方向.请计算一下南门A与历下亭C之间的距离约为(  )(参考数据:tan37°≈,tan53°≈)A.225mB.275mC.300mD.315m12.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是(  )A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<二、填空题(每小题4分,共24分.)13.分解因式:m2﹣4m+4=  .14.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于  .15.一个n边形的内角和等于720°,则n=  .16.代数式与代数式3﹣2x的和为4,则x=  .17.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多  元. 18.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于  .三、解答题19.(6分)计算:()﹣1+(π+1)0﹣2cos60°+20.(6分)解不等式组,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.22.(8分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了 A种图书20本和B种图书25本,共花费多少元?23.(8分)如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.24.(10分)某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.24.14.74.14.34.34.44.64.15.25.24.55.04.54.34.44.85.34.55.24.44.24.35.34.95.24.94.84.65.14.24.44.54.14.55.14.45.05.25.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率Ax<4.240.1B4.2≤x≤4.4120.3C4.5≤x≤4.7aD4.8≤x≤5.0bE5.1≤x≤5.3100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=  ,b=  ;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“ 防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.25.(10分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值.26.(12分)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究. (一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是  ,NB与MC的数量关系是  ;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.27.(12分)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由. 参考答案一、选择题1.解:﹣7的相反数为7,故选:C.2.解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.3.解:177.6=1.776×102.故选:B.4.解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.5.解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.6.解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.7.解:原式=+==,故选:B. 8.解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)÷7=9.8m,故选:B.9.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.10.解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,故选:A.11.解:如图,作CE⊥BA于E.设EC=xm,BE=ym. 在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.12.解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,t=2a+b,则a=,b=,∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:>0,解得:﹣1<t<,﹣>0,解得:t或1<t<3,故:﹣1<t<,故选:D. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.解:原式=(m﹣2)2,故答案为:(m﹣2)214.解:由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有8种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是=;故答案为.15.解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.16.解:根据题意得:+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣117.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.18.解:过点P作PG⊥FN,PH⊥BN,垂足为G、H, 由折叠得:ABNM是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8﹣5=3,在Rt△FNC中,FN==4,∴MF=5﹣4=1,在Rt△MEF中,设EF=x,则ME=3﹣x,由勾股定理得,12+(3﹣x)2=x2,解得:x=,∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+=,故答案为:.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.)19.解:()﹣1+(π+1)0﹣2cos60°+=2+1﹣2×+3=3﹣1+3=5 20.解:解①得:x≤4;解②得:x>2;∴原不等式组的解集为2<x≤10;∴原不等式组的所有整数解为3、4、5、6、7、8、9、10.21.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∠BAD=∠BCD,AB=CD,∵∠DAF=∠BCE,∴∠ABF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA),∴BF=DE.22.解:(1)设B种图书的单价为x元,则A种图书的单价为1.5x元,依题意,得:﹣=20,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意,∴1.5x=30.答:A种图书的单价为30元,B种图书的单价为20元.(2)30×0.8×20+20×0.8×25=880(元).答:共花费880元.23.解:(1)证明:∵AB、CD是⊙O的两条直径,∴OA=OC=OB=OD,∴∠OAC=∠OCA,∠ODB=∠OBD,∵∠AOC=∠BOD,∴∠OAC=∠OCA=∠ODB=∠OBD,即∠ABD=∠CAB;(2)连接BC. ∵AB是⊙O的两条直径,∴∠ACB=90°,∵CE为⊙O的切线,∴∠OCE=90°,∵B是OE的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.24.解:(1)由题意知C等级的频数a=8,则C组对应的频率为8÷40=0.2,∴b=1﹣(0.1+0.3+0.2+0.25)=0.15,故答案为:8、0.15;(2)D组对应的频数为40×0.15=6,补全图形如下: (3)估计该校八年级学生视力为“E级”的有400×0.25=100(人);(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率=.25.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD, ∴D(2+3,4),即:D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,),∴DE=4﹣=,EF=,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC=,∴=m,∴m=5,即:△BCD是以BC为腰的等腰三形,满足条件的m的值为4或5. 26.解:(一)(1)结论:∠NAB=∠MAC,BN=MC.理由:如图1中,∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.故答案为∠NAB=∠MAC,BN=CM.(2)如图2中,①中结论仍然成立. 理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.(二)如图3中,在A1C1上截取A1N=A1Q,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.∵∠C1A1B1=∠PA1Q,∴∠QA1B1=∠PA1N,∵A1A=A1P,A1B1=AN,∴△QA1B1≌△PA1N(SAS),∴B1Q=PN,∴当PN的值最小时,QB1的值最小,在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,∴A1M=A1B1•sin60°=4,∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,∴A1C1=4,∴NC1=A1C1﹣A1N=4﹣8,在Rt△NHC1,∵∠C1=45°,∴NH=4﹣4,根据垂线段最短可知,当点P与H重合时,PN的值最小,∴QB1的最小值为4﹣4. 27.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,∴直线l解析式为y=x﹣,∵D(m,﹣m2﹣4m),∴直线DO的解析式为y=﹣(m+4)x,由抛物线C与抛物线C′关于原点对称,可得点D、E关于原点对称,∴E(﹣m,m2+4m)如图2,过点D作DH∥y轴交直线l于H,过E作EK∥y轴交直线l于K,则H(m,m﹣),K(﹣m,m﹣),∴DH=﹣m2﹣4m﹣(m﹣)=﹣m2m+,EK=m2+4m﹣(m﹣)=m2+m+,∵DE=2EM∴=,∵DH∥y轴,EK∥y轴∴DH∥EK∴△MEK∽△MDH∴==,即DH=3EK∴﹣m2m+=3(m2+m+)解得:m1=﹣3,m2=,∵m<﹣2 ∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是Rt△,∠ABG=90°,∴tan∠GAB===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y=﹣x,解方程组,得,,∴点P的横坐标为:或.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2021-10-08 09:41:34 页数:22
价格:¥3 大小:523.50 KB
文章作者:151****0095

推荐特供

MORE