首页

【考前三个月】(江苏专用)2022高考数学程序方法策略篇 专题2 优化解答程序,构建答题模板 第6讲 圆锥曲线中的定点、定值问题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

第6讲 圆锥曲线中的定点、定值问题例7 已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为-1,离心率为e=.(1)求椭圆E的方程;(2)过点(1,0)作直线l交E于P、Q两点,试问:在x轴上是否存在一个定点M,使·为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.审题破题 (1)利用待定系数法求E的方程;(2)探求定点可以先根据特殊情况找出点,再对一般情况进行证明.解 (1)设椭圆E的方程为+=1(a>b>0),由已知得解得所以b2=a2-c2=1.所以椭圆E的方程为+y2=1.(2)假设存在符合条件的点M(m,0),设P(x1,y1),Q(x2,y2),则=(x1-m,y1),=(x2-m,y2),·=(x1-m)(x2-m)+y1y2=x1x2-m(x1+x2)+m2+y1y2.①当直线l的斜率存在时,设直线l的方程为y=k(x-1),由得x2+2k2(x-1)2-2=0,即(2k2+1)x2-4k2x+2k2-2=0,则x1+x2=,x1x2=,y1y2=k2(x1-1)(x2-1)=k2[x1x2-(x1+x2)+1]=-,所以·=-m·+m2-=.因为对于任意的k值,·为定值,所以2m2-4m+1=2(m2-2),得m=.所以M,此时·=-.②当直线l的斜率不存在时,直线l的方程为x=1,则x1+x2=2,x1x2=1,y1y2=-,由m=,得·=-.2\n综上,符合条件的点M存在,且坐标为.第一步:引进参数.从目标对应的关系式出发,引进相关参数.一般地,引进的参数是直线的夹角、直线的斜率或直线的截距等;第二步:列出关系式.根据题设条件,表达出对应的动态直线或曲线方程;第三步:探求直线过定点.若是动态的直线方程,将动态的直线方程转化成y-y0=k(x-x0)的形式,则k∈R时直线恒过定点(x0,y0);若是动态的曲线方程,将动态的曲线方程转化成f(x,y)+λg(x,y)=0的形式,则λ∈R时曲线恒过的定点即是f(x,y)=0与g(x,y)=0的交点;第四步:下结论;第五步:回顾反思.在解决圆锥曲线问题中的定点、定值问题时,引进参数的目的是以这个参数为中介,通过证明目标关系式与参数无关,达到解决问题的目的.跟踪训练7 已知抛物线y2=4x的焦点为F,直线l过点M(4,0).(1)若点F到直线l的距离为,求直线l的斜率;(2)设A,B为抛物线上的两点,且直线AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.(1)解 由已知得直线l的斜率存在,设直线l的方程为y=k(x-4),由题意知抛物线的焦点坐标为(1,0),因为点F到直线l的距离为,所以=,解得k=±,所以直线l的斜率为±.(2)证明 设线段AB中点的坐标为N(x0,y0),A(x1,y1),B(x2,y2),因为直线AB不与x轴垂直,所以AB斜率存在,所以直线MN的斜率为,直线AB的斜率为,直线AB的方程为y-y0=(x-x0),联立方程得消去x,得y2-y0y+y+x0(x0-4)=0,所以y1+y2=,因为N为线段AB的中点,所以=y0,即=y0,所以x0=2.即线段AB中点的横坐标为定值2.2

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

其他相关资源

文档下载

发布时间:2022-08-26 00:16:03 页数:2
价格:¥3 大小:25.32 KB
文章作者:U-336598

推荐特供

MORE