首页

【走向高考】2022届高三数学一轮基础巩固 第8章 第5节 空间中的垂直关系(含解析)北师大版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

【走向高考】2022届高三数学一轮基础巩固第8章第5节空间中的垂直关系北师大版一、选择题1.(文)对于直线m、l和平面α、β,α⊥β的一个充分条件是(  )A.m⊥l,m∥α,l∥β  B.m⊥l,α∩β=m,lαC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,mα[答案] D[解析] 本题考查空间线面位置关系的判定.A:与两相互垂直直线平行的平面的位置关系不能确定;B:平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系也不能确定;C:这两个平面也有可能重合可能平行;故选D.(理)平面α垂直于平面β(α、β为不重合的平面)成立的一个充分条件是(  )A.存在一条直线l,l⊥α,l⊥βB.存在一个平面γ,γ∥α,γ∥βC.存在一个平面γ,γ⊥α,γ⊥βD.存在一条直线l,l⊥α,l∥β[分析] 本题主要考查立体几何及简易逻辑的有关知识.由充分条件的含义可知本题就是要从四个选项中寻求使平面α⊥平面β成立的一个条件.[答案] D[解析] 对于选项A,l⊥α,l⊥β⇒α∥β;对于选项B,γ∥α,γ∥β⇒α∥β;对于选项C,当γ⊥α,γ⊥β成立时,平面α,β的关系是不确定的;对于选项D,当l⊥α,l∥β成立时,说明在β内必存在一条直线m,满足m⊥α,从而有α⊥β成立.2.(2022·辽宁高考)已知m,n表示两条不同直线,α表示平面,下列说法正确的是(  )A.若m∥α,n∥α,则m∥nB.若m⊥α,nα,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α[答案] B[解析] 本题考查空间中平行关系与垂直关系.对于A,m∥α,n∥α,则m,n的关系是平行,相交,异面,故A不正确.对于B.由直线与平面垂直的定义知正确.3.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⃘α,l⃘β,则(  )-8-\nA.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l[答案] D[解析] 解法1:平移直线m使之与n相交于O,这两条直线确定的平面为γ,∵m⊥平面α,n⊥平面β,则平面α与平面β相交.设交线为a,则a⊥γ,又l⊥m,l⊥n,则l⊥γ,∴l∥A.解法2:若α∥β,∵m⊥α,n⊥β,∴m∥n,这与m、n异面矛盾,故α与β相交,设α∩β=a,则a⊥m,a⊥n,在m上取点O,过O作n′∥n,设m与n′确定的平面为γ,∵a⊥m,a⊥n′,∴a⊥γ,∵l⊥n,∴l⊥n′,又l⊥m,∴l⊥γ,∴a∥l.4.PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是(  )①平面PAB⊥平面PBC   ②平面PAB⊥平面PAD③平面PAB⊥平面PCD   ④平面PAB⊥平面PACA.①②        B.①③C.②③D.②④[答案] A[解析] 易证BC⊥平面PAB,则平面PAB⊥平面PBC.又AD∥BC,故AD⊥平面PAB,则平面PAD⊥平面PAB,因此选A.5.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是(  )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC[答案] D[解析] 因BC∥DF,所以BC∥平面PDF,A成立;易证BC⊥平面PAE,BC∥DF,所以结论B、C均成立;点P在底面ABC内的射影为△ABC的中心,不在中位线DE上,故结论D不成立.-8-\n6.下列命题中错误的是(  )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β[答案] D[解析] 本题主要考查空间中的线面、面面关系等基础知识.对于A、α内存在直线平行于α与β的交线,故α内必存在直线平行于β,正确;对于B,由于α不垂直于β,α内一定不存在直线垂直于β,否则α⊥β,正确;对于C,由平面与平面垂直的性质知正确,故D不正确,选D.二、填空题7.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.[答案] AB,BC,AC AB[解析] ∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥PC.与AP垂直的直线是AB.8.(2022·青岛模拟)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)[答案] DM⊥PC(或BM⊥PC)[解析] 由定理知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC平面PCD,∴平面MBD⊥平面PCD.9.(文)已知m,n是两条不同的直线,α,β为两个不同的平面,下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;-8-\n④若m⊥α,n⊥β,α⊥β,则m⊥n.其中正确的命题是________(填上所有正确命题的序号).[答案] ①④[解析] ②若m∥α,n∥β,m⊥n,则α∥β或α,β相交,所以②错误.③若m⊥α,n∥β,m⊥n,则α∥β或α,β相交,所以③错误.故填①④.(理)在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平面ABC,PC=4,M是AB上一个动点,则PM的最小值为________.[答案] 2[解析] 如图,∵PC⊥平面ABC,MC平面ABC,∴PC⊥MC.故PM==.又∵MC的最小值为=2,∴PM的最小值为2.三、解答题10.(2022·山东高考)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面PAC.[解析] 解题思路:(1)问根据线面平行的判定定理在面BEF找直线与AP平行,充分利用中点的条件.(2)证BF⊥AC,BE⊥AP即可.(1)证明:如图所示,连接AC交BE于点O,连接OF.∵E为AD中点,BC=AD,AD∥BC,∴四边形ABCE为平行四边形.-8-\n∴O为AC的中点,又F为PC中点∴OF∥AP.又OF平面BEF,AP⃘平面BEF,∴AP∥平面BEF.(2)由(1)知四边形ABCE为平行四边形.又∵AB=BC,∴四边形ABCE为菱形.∴BE⊥AC.由题意知BC綊AD綊ED∴四边形BCDE为平行四边形∴BE∥CD.又∵AP⊥平面PCD,∴AP⊥CD.∴AP⊥BE.又∵AP∩AC=A,∴BE⊥平面PAC.一、选择题1.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么(  )A.PA=PB>PCB.PA=PB<PCC.PA=PB=PCD.PA≠PB≠PC[答案] C[解析] ∵M为AB的中点,△ACB为直角三角形,∴BM=AM=CM,又PM⊥平面ABC,∴Rt△PMB≌Rt△PMA≌Rt△PMC,故PA=PB=PC.2.(2022·广东高考)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是(  )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定[答案] D-8-\n[解析] 如图,正方体中l1与l4异面.选D.二、填空题3.对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中真命题的序号是________.(把你认为正确命题的序号都填上)[答案] ①④[解析] 本题考查四面体的性质,取BC的中点E,则BC⊥AE,BC⊥DE,∴BC⊥平面ADE,∴BC⊥AD,故①正确.设O为A在面BCD上的射影,依题意OB⊥CD,OC⊥BD,∴O为垂心,∴OD⊥BC,∴BC⊥AD,故④正确,②③易排除,故答案为①④.4.假设平面α∩平面β=EF,AB⊥α,CD⊥β,垂足分别为B,D,如果增加一个条件,就能推出BD⊥EF,现有下面四个条件:①AC⊥α;②AC∥α;③AC与BD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的是________.(把你认为正确的条件序号都填上)[答案] ①③[解析] 如果AB与CD在一个平面内,可以推出EF垂直于该平面,又BD在该平面内,所以BD⊥EF.故要得到BD⊥EF,只需AB、CD在一个平面内即可,只有①③能保证这一条件.三、解答题-8-\n5.在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、SC和DC的中点,点P在线段FG上.(1)求证:平面EFG∥平面SDB;(2)求证:PE⊥AC.[解析] (1)∵E、F、G分别为BC、SC、CD的中点,∴EF∥SB,EG∥BD.∵EF⃘平面SBD,EG⃘平面SBD,∴EF∥平面SBD,EG∥平面SBD.∵EG∩EF=E,∴平面EFG∥平面SDB.(2)∵B1B⊥底面ABCD,∴AC⊥B1B.又∵四边形ABCD是正方形,∴AC⊥BD.∴AC⊥平面B1BDD1,即AC⊥平面SBD.又平面EFG∥平面SBD,∴AC⊥平面EFG.∵PE平面EFG,∴PE⊥AC.6.(2022·江西高考)如图,三棱柱ABC-A1B1C1中,AA1⊥BC,A1B⊥BB1.(1)求证:A1C⊥CC1;(2)若AB=2,AC=,BC=,问AA1为何值时,三棱柱ABC-A1B1C1体积最大,并求此最大值.[解析] (1)证明:在三棱柱ABC-A1B1C1中,AA1⊥BC,∴BB1⊥BC.又∵BB1⊥A1B,BC∩A1B=B,∴BB1⊥平面BCA1.∵A1C平面BCA,∴BB1⊥A1C.∵BB1∥CC1,∴A1C⊥CC1.(2)设AA1=x,∵AB=2,AC=,-8-\n在Rt△A1BB1中,A1B==.同理在Rt△AC1C中,A1C==,在△A1BC中,cos∠BA1C==-.∴sin∠BA1C=,∴S△A1BC=A1B·A1C·sin∠BA1C=∵BB1⊥平面A1BC(已证)∴三棱柱ABC-A1B1C1的体积V=S·h=S△A1BC·BB1===.∴当x2=即x=时,AA1=,体积V取最大值为.-8-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:13:37 页数:8
价格:¥3 大小:233.67 KB
文章作者:U-336598

推荐特供

MORE