首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【走向高考】2022届高三数学一轮基础巩固 第8章 第4节 空间中的平行关系(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第8章 第4节 空间中的平行关系(含解析)北师大版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
【走向高考】2022届高三数学一轮基础巩固第8章第4节空间中的平行关系北师大版一、选择题1.下列命题中正确的个数是( )①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4[答案] B[解析] a∩α=A时,a⃘α,故①错;直线l与α相交时,l上有无数个点不在α内,故②错;l∥α时,α内的直线与l平行或异面,故③错;l∥α,l与α无公共点,所以l与α内任一条直线都无公共点,④正确;长方体中的相交直线A1C1与B1D1都与面ABCD平行,所以⑤正确.2.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )A.①③B.①④C.②③D.②④[答案] B[解析] ①由平面ABC∥平面MNP,可得AB∥平面MNP.④由AB∥CD,CD∥NP,得AB∥NP,所以AB∥平面MNP.-10-\n3.若有直线m、n和平面α、β,下列四个命题中,正确的是( )A.若m∥α,n∥α,则m∥nB.若mα,nα,m∥β,n∥β,则α∥βC.若α⊥β,mα,则m⊥βD.若α⊥β,m⊥β,m⃘α,则m∥α[答案] D[解析] 如图(1),β∥α,mβ,nβ,有m∥α,n∥α,但m与n可以相交,故A错;如图(2),m∥n∥l,α∩β=l,有m∥β,n∥β,故B错;如图(3),α⊥β,α∩β=l,mα,m∥l,故C错.D选项证明如下:α⊥β设交线为l,在α内作n⊥l,则n⊥β,∵m⊥β,∴m∥n,∵nα,m⃘α,∴m∥α.4.(文)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β[答案] C[解析] 若m∥α,n∥α,则m与n可能平行、相交或异面,A错误;若m∥α,m∥β,则α与β可能平行也可能相交,B错误;若m∥n,m⊥α,则由线面垂直的性质定理可得n⊥α,C正确;若m∥α,α⊥β,则m可能在β内可能平行,也可能垂直,D错误.(理)设l为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若b⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β-10-\n[答案] B[解析] 本题考查了空间线面关系.若α∩β=m,l∥m,l⃘α,l⃘β,则A错.垂直于同一直线的两平面平行,B正确.当l⊥α,l∥β时α⊥β,C错,若α⊥β,l∥α,则l与β关系不确定,D错.5.(2022·聊城模拟)设a、b、c表示三条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A.⇒c⊥βB.⇒b⊥cC.⇒c∥αD.⇒b⊥α[答案] D[解析] 由a∥α,b⊥α可得b与α的位置关系有:b∥α,bα,b与α相交,所以D不正确.6.(文)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥α B.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案] B[解析] 本小题主要考查线面平行、面面平行、充要条件等基础知识.易知选项A、C、D推不出α∥β,只有B可推出α∥β,且α∥β不一定推出B,∴B项为α∥β的一个充分而不必要条件,选B.(理)如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°[答案] C-10-\n[解析] ∵截面PQMN为正方形,∴PQ∥MN,PQ∥平面DAC.又∵平面ABC∩平面ADC=AC,PQ平面ABC,∴PQ∥AC,同理可证QM∥BD.故选项A、B、D正确,C错误.二、填空题7.(文)棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是________.[答案] [解析] 由面面平行的性质知截面与平面AB1的交线MN是△AA1B的中位线,所以截面是梯形CD1MN,易求其面积为.(理)如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.[答案] [解析] 本题考查线面平行.由EF∥平面AB1C,EF平面ABCD,平面ABCD∩平面AB1C=AC,知EF∥AC.所以由E是中点知EF=AC=.8.(文)在四面体ABCD中,M、N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.[答案] 平面ABC与平面ABD[解析] 连BN延长交CD于点E,连AM并延长也与CD交于E点(因为E为CD中点),又=-10-\n=,故MN∥AB.所以MN∥平面ABC且MN∥平面ABD.(理)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.[答案] 6[解析] 过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.9.已知平面α∩β=m,直线n∥α,n∥β,则直线m、n的位置关系是________.[答案] m∥n[解析] 在α内取点A∉m,则点A与n确定一平面θ,且θ∩α=A.同理可作平面γ且γ∩β=B.∵n∥α,n∥β,∴n∥a,n∥B.∴a∥B.∵a⃘β,bβ,∴a∥β.∵aα,α∩β=m,∴a∥m,∴n∥m.三、解答题10.(2022·安徽高考)如图,四棱锥P-ABCD的底面边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.[解析] ∵BC∥平面GEFH,BC平面PBC,且平面PBC∩平面GEFH=GH,-10-\n∴GH∥BC.同理可证EF∥BC,∴GH∥EF.(2)连接AC,BD交于一点O,BC交EF于K,连接OP、GK.因为PA=PC,O是AC的中点,所以PO⊥AC,同理可证PO⊥BD,又∵BD∩AC=O,且AC,BD都在底面内,∴PO⊥平面ABCD,又∵平面GEFH⊥平面ABCD,PO⃘平面GEFH,∴PO∥平面GEFH.又∵平面GEFH∩平面PBD=GK,∴PO∥GK,且GK⊥平面ABCD,∴GK⊥EF,所以GK是梯形GEFH的高.∵AB=8,EB=2,∴EBAB=KBDB=14,∴KB=DB=OB,即K为OB的中点,又∵PO∥GK,∴GK=PO,即G是PB的中点,且GH=BC=4.又由已知得OB=4,PO===6.∴GK=3.∴四边形GEFH的面积S=·GK=×3=18.一、选择题1.(文)设m,l是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,mα,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,mα,则l∥mD.若l∥α,m∥α,则l∥m[答案] B-10-\n[解析] 两平行线中一条垂直于一个平面,另一条边垂直于这个平面,故选B.(理)已知两条互不重合的直线m、n,两个互不重合的平面α、β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β;②若m∥α,n∥β,且m∥n,则α∥β;③若m⊥α,n∥β,且m⊥n,则α⊥β;④若m⊥α,n∥β,且m∥n,则α∥β.其中正确命题的个数为( )A.0 B.1 C.2 D.3[分析] 本题考查线面的位置关系.虽然是一道单选题,但更似一道多选题,对所述四个命题的判断有一个出错就不可能产生正确结果.[答案] B[解析] 命题①是正确的;命题②不正确,很容易找到反例;命题③也不正确,可以构造出α∥β的情形;命题④也不正确,可以构造出α⊥β的情形.2.(文)已知两条直线m、n,两个平面α、β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,mα,nβ⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是( )A.①③B.②④C.①④D.②③[答案] C[解析] 两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,故①正确;两平面平行,分别在这两平面内的两直线可能平行,也可能异面,故②错;m∥n,m∥α时,n∥α或nα,故③错;由α∥β,m⊥α得m⊥β,由m⊥β,n∥m得n⊥β,故④正确.(理)已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β[答案] D[解析] ∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m,从而B一定正确.∵A∈α,AB∥l,lα,∴B∈α.-10-\n∴AB⃘β,lβ.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立,故D不一定正确.二、填空题3.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:①⇒a∥b;②⇒a∥b;③⇒α∥β;④⇒a∥α;⑤⇒α∥β;⑥⇒a∥α.其中正确的命题是________(将正确命题的序号都填上).[答案] ①④⑤⑥[解析] ②中a,b的位置可能相交、平行、异面;③中α、β的位置可能相交.4.(文)在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.[答案] Q为CC1的中点[解析] 当Q为CC1的中点时,QB∥PA.又D1B⃘平面PAO,QB⃘平面PAO,所以D1B∥平面PAO.QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.(理)如图所示,ABCD是空间四边形,E,F,G,H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当EFGH是菱形时,AEEB=________.[答案] mn[解析] 如图所示,设AE=a,EB=b,由EF∥AC可得EF=.同理EH=.∵EF=EH,∴=,于是=.三、解答题5.(文)如图,若PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面PCE-10-\n[解析] 取PC的中点M,连接ME、MF,则FM∥CD且FM=CD.又∵AE∥CD且AE=CD,∴FM綊AE,即四边形AFME是平行四边形.∴AF∥ME,又∵AF⃘平面PCE,EM平面PCE,∴AF∥平面PCE.(理)如图,已知α∥β,异面直线AB,CD和平面α,β分别交于A,B,C,D四点,E,F,G,H分别是AB,BC,CD,DA的中点.求证:(1)E,F,G,H共面;(2)平面EFGH∥平面α.[解析] (1)∵E,H分别是AB,DA的中点,∴EH綊BD.同理,FG綊BD,∴FG綊EH.∴四边形EFGH是平行四边形,∴E,F,G,H共面.(2)平面ABD和平面α有一个公共点A,设两平面交于过点A的直线AD′.∵α∥β,∴AD′∥BD.又∵BD∥EH,∴EH∥BD∥AD′.∴EH∥平面α,同理,EF∥平面α,又EH∩EF=E,EH平面EFGH,EF平面EFGH,∴平面EFGH∥平面α.6.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.[解析] (1)由题设知,BB1綊DD1,∴BB1D1D是平行四边形,∴BD∥B1D1.-10-\n又BD⃘平面CD1B1,∴BD∥平面CD1B1.∵A1D1綊B1C1綊BC,∴A1BCD1是平行四边形,∴A1B∥D1C.又A1B⃘平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1.(2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD-A1B1D1的高.又∵AO=AC=1,AA1=,∴A1O==1.又∵S△ABD=××=1,∴V三棱柱ABD-A1B1D1=S△ABD×A1O=1.-10-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【走向高考】2022届高三数学一轮基础巩固 第9章 第7节 双曲线(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第9章 第5节 椭圆(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第9章 第4节 直线与圆、圆与圆的位置关系(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第9章 第3节 圆的方程(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第9章 第2节 两直线的位置关系与距离公式(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第8章 第5节 空间中的垂直关系(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第8章 第3节 空间图形的基本关系与公理(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第7章 第1节 不等关系与不等式(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第10章 第3节 变量间的相关关系与统计案例(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第10章 第1节 抽样方法(含解析)北师大版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:13:37
页数:10
价格:¥3
大小:336.37 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划