2024中考数学第一轮专题复习: 多边形与平行四边形(解析版)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/13
2/13
3/13
4/13
5/13
6/13
7/13
8/13
9/13
10/13
剩余3页未读,查看更多内容需下载
多边形与平行四边形(27题)一、单选题1(2023·湖南·统考中考真题)如图,在四边形ABCD中,BC∥AD,添加下列条件,不能判定四边形ABCD是平行四边形的是()A.AB=CDB.AB∥CDC.∠A=∠CD.BC=AD【答案】A【分析】依据平行四边形的判定,依次分析判断即可得出结果.【详解】解:A、当BC∥AD,AB=CD时,不能判定四边形ABCD是平行四边形,故此选项符合题意;B、当AB∥CD,BC∥AD时,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;C、当BC∥AD,∠A=∠C时,可推出AB∥DC,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;D、当BC∥AD,BC=AD时,依据一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;故选:A.【点睛】此题考查了平行四边形的判定,解决问题的关键要熟记平行四边形的判定方法.2(2023·湖南永州·统考中考真题)下列多边形中,内角和等于360°的是()A.B.C.D.【答案】B【分析】根据n边形内角和公式n-2⋅180°分别求解后,即可得到答案【详解】解:A.三角形内角和是180°,故选项不符合题意;B.四边形内角和为4-2×180°=360°,故选项符合题意;C.五边形内角和为5-2×180°=540°,故选项不符合题意;D.六边形内角和为6-2×180°=720°,故选项不符合题意.故选:B.【点睛】此题考查了n边形内角和,熟记n边形内角和公式n-2⋅180°是解题的关键.3(2023·湖南·统考中考真题)如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平形四边形,则下列正确的是()·1·
A.AD=BCB.∠ABD=∠BDCC.AB=ADD.∠A=∠C【答案】D【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】解:A.根据AB∥CD,AD=BC,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意;B.∵AB∥CD,∴∠ABD=∠BDC,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意;C.根据AB∥CD,AB=AD,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意;D.∵AB∥CD,∴∠ABC+∠C=180°,∵∠A=∠C∴∠ABC+∠A=180°,∴AD∥BC∴四边形ABCD为平形四边形,故该选项正确,符合题意;故选:D.【点睛】本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.4(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S=ah时,若△ABE平移到△DCF,a=4,h=3,则△ABE的平移距离为()A.3B.4C.5D.12【答案】B【分析】根据平移的方向可得,△ABE平移到△DCF,则点A与点D重合,故△ABE的平移距离为AD的长.【详解】解:用平移方法说明平行四边形的面积公式S=ah时,将△ABE平移到△DCF,故平移后点A与点D重合,则△ABE的平移距离为AD=a=4,故选:B.【点睛】本题考查了平移的性质,熟练掌握平移的性质是解题的关键.5(2023·四川泸州·统考中考真题)如图,▱ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD中点,若AD=4,CD=6,则EO的长为()·2·
A.1B.2C.3D.4【答案】A【分析】根据平行四边形的性质、平行线的性质、角平分线的定义以及等腰三角形的判定可得AP=AD=4,进而可得BP=2,再根据三角形的中位线解答即可.【详解】解:∵四边形ABCD是平行四边形,CD=6,∴AB∥CD,AB=CD=6,DO=BO,∴∠CDP=∠APD,∵PD平分∠ADC,∴∠ADP=∠CDP,∴∠ADP=∠APD,∴AP=AD=4,∴BP=AB-AP=6-4=2,∵E是PD中点,1∴OE=BP=1;2故选:A.【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定以及三角形的中位线定理等知识,熟练掌握相关图形的判定与性质是解题的关键.6(2023·四川成都·统考中考真题)如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BDB.OA=OCC.AC⊥BDD.∠ADC=∠BCD【答案】B【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∵四边形ABCD是平行四边形,对角线AC与BD相交于点O,A.AC=BD,不一定成立,故该选项不正确,不符合题意;B.OA=OC,故该选项正确,符合题意;C.AC⊥BD,不一定成立,故该选项不正确,不符合题意;D.∠ADC=∠BCD,不一定成立,故该选项不正确,不符合题意;故选:B.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.7(2023·安徽·统考中考真题)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()·3·
A.60°B.54°C.48°D.36°【答案】D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.360°360°【详解】∵∠BAE=180°-,∠COD=,55360°360°∴∠BAE-∠COD=180°--=36°,55故选D.【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.二、填空题8(2023·云南·统考中考真题)五边形的内角和是度.【答案】540【分析】根据n边形内角和为n-2×180°求解即可.【详解】五边形的内角和是5-2×180°=540°.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n边形内角和为n-2×180°是解题关键.9(2023·新疆·统考中考真题)若正多边形的一个内角等于144°,则这个正多边形的边数是.【答案】10【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n边形,根据题意得:n-2×180°÷n=144°,解得:n=10.故答案为:10.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.10(2023·上海·统考中考真题)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.【答案】18【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【详解】根据正n边形的中心角的度数为360°÷n,则n=360÷20=18,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.·4·
11(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.【答案】6【详解】解:根据多边形的外角和等于360°和正多边形的每一个外角都相等,得多边形的边数为360°÷60°=6.故答案为:6.12(2023·山东临沂·统考中考真题)如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC平行的方向,从靠近A的AB边的三等分点剪去两个角,得到的平行四边形纸片的周长是.【答案】14【分析】由平行四边形的性质推出DF∥BC,DE∥AC,得到△ADF∽△ABC,△BDE∽△BAC,利用相似三角形的性质求解即可.AD1【详解】解:如图,由题意得=,四边形DECF是平行四边形,AB3∴DF∥BC,DE∥AC,∴△ADF∽△ABC,△BDE∽△BAC,DFAD1DEBD2∴==,==,BCAB3ACAB3∵AC=6,BC=9,∴DF=3,DE=4,∵四边形DECF平行四边形,∴平行四边形DECF纸片的周长是23+4=14,故答案为:14.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.13(2023·湖南·统考中考真题)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.·5·
【答案】2【分析】根据平行四边形的性质可得AD∥BC,则∠AEB=∠CBE,再由角平分线的定义可得∠ABE=∠CBE,从而求得∠AEB=∠ABE,则AE=AB,从而求得结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2,故答案为:2.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定,掌握平行四边形的性质是解题的关键.14(2023·重庆·统考中考真题)如图,在正五边形ABCDE中,连接AC,则∠BAC的度数为.【答案】36°【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.【详解】正五边形内角和:(5-2)×180°=3×180°=540°°540°∴∠B==108,5°°°180-∠B180-108°∴∠BAC===36.22故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.15(2023·湖北黄冈·统考中考真题)若正n边形的一个外角为72°,则n=.【答案】5【分析】正多边形的外角和为360°,每一个外角都相等,由此计算即可.360【详解】解:由题意知,n==5,72故答案为:5.【点睛】本题考查正多边形的外角问题,解题的关键是掌握正n边形的外角和为360°,每一个外角的度数360°均为.n16(2023·福建·统考中考真题)如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD于点E,F.若AE=10,则CF的长为.·6·
【答案】10【分析】由平行四边形的性质可得DC∥AB,DC=AB即∠OFD=∠OEB,∠ODF=∠EBO,再结合OD=OB可得△DOF≌△BOEAAS可得DF=EB,最进一步说明FC=AE=10即可解答.【详解】解:∵ABCD中,∴DC∥AB,DC=AB,∴∠OFD=∠OEB,∠ODF=∠EBO,∵OD=OB,∴△DOF≌△BOEAAS,∴DF=EB,∴DC-DF=AB-BE,即FC=AE=10.故答案为:10.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定与性质等知识点,证明三角形全等是解答本题的关键.17(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是边形.【答案】5【详解】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.18(2023·甘肃兰州·统考中考真题)如图,在▱ABCD中,BD=CD,AE⊥BD于点E,若∠C=70°,则∠BAE=°.【答案】50【分析】证明∠DBC=∠C=70°,∠BDC=180°-2×70°=40°,由AB∥CD,可得∠ABE=∠BDC=40°,结合AE⊥BD,可得∠BAE=90°-40°=50°.【详解】解:∵BD=CD,∠C=70°,∴∠DBC=∠C=70°,∠BDC=180°-2×70°=40°,∵▱ABCD,∴AB∥CD,∴∠ABE=∠BDC=40°,∵AE⊥BD,∴∠BAE=90°-40°=50°;故答案为:50·7·
【点睛】本题考查的是等腰三角形的性质,平行四边形的性质,三角形的内角和定理的应用,熟记基本几何图形的性质是解本题的关键.19(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B,折痕为AF,则∠AFB的大小为度.【答案】451【分析】根据题意求得正五边形的每一个内角为5-2×180°=108°,根据折叠的性质求得∠BAM,5∠FAB,在△AFB中,根据三角形内角和定理即可求解.1【详解】解:∵正五边形的每一个内角为5-2×180°=108°,5将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,11则∠BAM=∠BAE=×108°=54°,22∵将纸片折叠,使边AB落在线段AM上,点B的对应点为点B,折痕为AF,11∴∠FAB=∠BAM=×54°=27°,∠ABF=∠B=108°,22在△AFB中,∠AFB=180°-∠B-∠FAB=180°-108°-27°=45°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.20(2023·重庆·统考中考真题)若七边形的内角中有一个角为100°,则其余六个内角之和为.【答案】800°/800度【分析】根据多边形的内角和公式180°n-2即可得.【详解】解:∵七边形的内角中有一个角为100°,∴其余六个内角之和为180°×7-2-100°=800°,故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.三、解答题21(2023·四川自贡·统考中考真题)在平行四边形ABCD中,点E、F分别在边AD和BC上,且DE=BF.求证:AF=CE.·8·
【答案】见解析【分析】平行四边形的性质得到AD=BC,AD∥BC,进而推出AE=CF,得到四边形AECF是平行四边形,即可得到AF=EC.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AE=CF,∴AE=CF,AE∥CF∴四边形AECF是平行四边形,∴AF=CE.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法,是解题的关键.22(2023·湖南·统考中考真题)如图所示,在△ABC中,点D、E分别为AB、AC的中点,点H在线段CE上,连接BH,点G、F分别为BH、CH的中点.(1)求证:四边形DEFG为平行四边形(2)DG⊥BH,BD=3,EF=2,求线段BG的长度.【答案】(1)见解析(2)511【分析】(1)由三角形中位线定理得到DE∥BC,DE=BC,GF∥BC,GF=BC,得到GF∥DE,GF22=DE,即可证明四边形DEFG为平行四边形;(2)由四边形DEFG为平行四边形得到DG=EF=2,由DG⊥BH得到∠DGB=90°,由勾股定理即可得到线段BG的长度.【详解】(1)解:∵点D、E分别为AB、AC的中点,1∴DE∥BC,DE=BC,2∵点G、F分别为BH、CH的中点.1∴GF∥BC,GF=BC,2∴GF∥DE,GF=DE,∴四边形DEFG为平行四边形;(2)∵四边形DEFG为平行四边形,∴DG=EF=2,·9·
∵DG⊥BH,∴∠DGB=90°,∵BD=3,2222∴BG=BD-DG=3-2=5.【点睛】此题考查了中位线定理、平行四边形的判定和性质、勾股定理等知识,证明四边形DEFG为平行四边形和利用勾股定理计算是解题的关键.23(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=EF=FD,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若△ABE的面积等于2,求△CFO的面积.【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,结合BE=FD可得OE=OF,即可证明四边形AECF是平行四边形;(2)根据等底等高的三角形面积相等可得S△AEF=S△ABE=2,再根据平行四边形的性质可得S△CFO=111S△CEF=S△AEF=×2=1.222【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=FD,∴OB-BE=OD-FD,∴OE=OF,又∵OA=OC,∴四边形AECF是平行四边形.(2)解:∵S△ABE=2,BE=EF,∴S△AEF=S△ABE=2,∵四边形AECF是平行四边形,111∴S△CFO=S△CEF=S△AEF=×2=1.222【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分.24(2023·山东·统考中考真题)如图,在▱ABCD中,AE平分∠BAD,交BC于点E;CF平分∠BCD,交AD于点F.求证:AE=CF.·10·
【答案】证明见解析【分析】由平行四边形的性质得∠B=∠D,AB=CD,AD∥BC,由平行线的性质和角平分线的性质得出∠BAE=∠DCF,可证△BAE≌△DCF,即可得出AE=CF.【详解】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠BAD=∠DCB,AD∥BC,∵AE平分∠BAD,CF平分∠BCD,∴∠BAE=∠DAE=∠BCF=∠DCF,在△BAE和△DCF中,∠B=∠DAB=CD∠BAE=∠DCF∴△BAE≌△DCFASA∴AE=CF.【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键.25(2023·重庆·统考中考真题)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE=OF.证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=①.∵EF垂直平分AC,∴②.又∠EOC=_③.∴ΔCOE≅ΔAOFASA.∴OE=OF.小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:·11·
过平行四边形对角线中点的直线④.【答案】作图:见解析;∠FAO;AO=CO;∠FOA;被平行四边形一组对边所截,截得的线段被对角线中点平分【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴AO=CO.又∠EOC=∠FOA.∴△COE≅△AOFASA.∴OE=OF.故答案为:∠FAO;AO=CO;∠FOA;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.26(2023·四川南充·统考中考真题)如图,在▱ABCD中,点E,F在对角线AC上,∠CBE=∠ADF.求证:(1)AE=CF;(2)BE∥DF.【答案】见解析【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等,再利用已知条件求证∠ABE=∠CDF,最后证明△ABE≌△CDFASA即可求出答案.(2)根据三角形全等证明角度相等,再利用邻补角定义推出∠BEF=∠EFD即可证明两直线平行.【详解】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∠ABC=∠ADC,∴∠BAE=∠FCD.∵∠CBE=∠ADF,∠ABC=∠ADC,∴∠ABE=∠CDF.·12·
∴△ABE≌△CDFASA.∴AE=CF.(2)证明:由(1)得△ABE≌△CDFASA,∴∠AEB=∠CFD.∵∠AEB+∠BEF=180°,∠CFD+∠EFD=180°,∴∠BEF=∠EFD.∴BE∥DF.【点睛】本题考查了平行四边形的性质,邻补角定义,三角形全等,平行线的判定,解题的关键在于熟练掌握平行四边形的性质.27(2023·四川广安·统考中考真题)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E、F,且AF=CE,∠BAC=∠DCA.求证:四边形ABCD是平行四边形.【答案】见详解【分析】先证明△AEB≌△CFD(ASA),再证明AB=CD,AB∥CD,再由平行四边形的判定即可得出结论.【详解】证明:∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°,∵AF=CE,AE=AF-EF,CF=CE-EF,∴AE=CF,又∵∠BAC=∠DCA,∴△AEB≌△CFD(ASA),∴AB=CD,∵∠BAC=∠ACD,∴AB∥CD,四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质等知识,熟练掌握平行四边形的判定,证明三角形全等是解题的关键.·13·
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)