首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点22概率与统计大题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点22概率与统计大题突破(附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
命题点22 概率与统计1.[2022·新高考Ⅱ卷]在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如图所示的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).解:2.[2023·新课标Ⅱ卷]某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);(2)设函数f(c)=p(c)+q(c),当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值.解: 3.[2023·重庆模拟]某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示,2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有是“年轻人”. (1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,依据小概率值α=0.05的χ2独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为,,.方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为,,.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010xα2.0722.7063.8415.0246.635其中χ2=,n=a+b+c+d.解: 4.[2023·河北石家庄模拟]植物生长调节剂是一种对植物的生长发育有调节作用的化学物质,它在生活中的应用非常广泛.例如,在蔬菜贮藏前或者贮藏期间,使用一定浓度的植物生长调节剂,可抑制萌芽,保持蔬菜新鲜,延长贮藏期.但在蔬菜上残留的一些植物生长调节剂会损害人体健康.某机构研发了一种新型植物生长调节剂A,它能延长种子、块茎的休眠,进而达到抑制萌芽的作用.为了测试它的抑制效果,高三某班进行了一次数学建模活动,研究该植物生长调节剂A对甲种子萌芽的具体影响,通过实验,收集到A的浓度u(mol/L)与甲种子发芽率Y的数据.表(一)A浓度u(mol/L)10-1210-1010-810-610-4发芽率Y0.940.760.460.240.10若直接采用实验数据画出散点图,(如图1所示)除了最后一个数据点外,其他各数据点均紧临坐标轴,这样的散点图给我们观察数据背后的规律造成很大的障碍,为了能够更好的观察现有数据,将其进行等价变形是一种有效的途径,通过统计研究我们引进一个中间量x,令x=lgu+7,通过x=lgu+7将A浓度变量变换为A的浓度级变量,得到新的数据.表(二)A浓度u(mol/L)10-1210-1010-810-610-4A浓度级x12345发芽率Y0.940.760.460.240.10(1)如图2所示新数据的散点图,散点的分布呈现出很强的线性相关特征.请根据表中数据,建立Y关于x的经验回归方程=x+;(2)根据得到的经验回归方程,要想使得甲种子的发芽率不高于0.4,估计A浓度至少要达到多少mol/L?附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其经验回归方程=x+中斜率和截距的最小二乘估计公式分别为:.解: 命题点22 概率与统计(大题突破)1.解析:(1)平均年龄=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=(0.005+0.03+0.3+0.595+1.035+1.1+1.105+0.45+0.17)×10=47.9(岁).(2)设A={一位这种疾病患者的年龄位于区间[20,70)},则P(A)=1-P()=1-(0.001+0.002+0.006+0.002)×10=1-0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式,得P(C|B)====0.0014375≈0.0014.即此人患这种疾病的概率约为0.0014.2.解析:(1)由题图知(100-95)×0.002=1%>0.5%,所以95<c<100,设X为患病者的该指标,则p(c)=P(X≤c)=(c-95)×0.002=0.5%,解得c=97.5.设Y为未患病者的该指标,则q(c)=P(Y>c)=(100-97.5)×0.01+5×0.002=0.035=3.5%.(2)当95≤c≤100时,p(c)=(c-95)×0.002=0.002c-0.19,q(c)=(100-c)×0.01+5×0.002=-0.01c+1.01,所以f(c)=p(c)+q(c)=-0.008c+0.82;当100<c≤105时,p(c)=5×0.002+(c-100)×0.012=0.012c-1.19,q(c)=(105-c)×0.002=-0.002c+0.21,所以f(c)=p(c)+q(c)=0.01c-0.98.综上所述,f(c)=.由一次函数的单调性知,函数f(c)在[95,100]上单调递减,在(100,105]上单调递增,作出f(c)在区间[95,105]上的大致图象(略),可得f(c)在区间[95,105]的最小值f(c)min=f(100)=-0.008×100+0.82=0.02.3.解析:(1)由图2知,样本中经常使用直播销售的用户有(30%+19%+11%)×200=120人,其中年轻人有120×=90人,由图1知,样本中的年轻人有(45%+35%)×200=160人,补充完整的2×2列联表如下,年轻人非年轻人合计经常使用直播销售用户9030120不常使用直播销售用户701080合计16040200∴χ2===4.6875>3.841,故依据小概率值α=0.05的χ2独立性检验,认为经常使用网络直播销售与年龄有关.(2)方案一:设获利X万元,则X的所有可能取值为300,-150,0,E(X)=300×+(-150)×+0×=150, D(X)=(300-150)2×+(-150-150)2×+(0-150)2×=36000;方案二:设获利Y万元,则Y的所有可能取值为500,-300,0,E(Y)=500×+(-300)×+0×=160,D(Y)=(500-160)2×+(-300-160)2×+(0-160)2×=126400,∴E(X)<E(Y),D(X)<D(Y),∴从获利的期望上看,方案二获得的利润更多些,但方案二的方差比方案一的方差大得多,从稳定性方面看方案一更稳定,故从获利角度考虑,选择方案二;从规避风险角度考虑,选择方案一.4.解析:(1)由题意=(1+2+3+4+5)=3,=(0.94+0.76+0.46+0.24+0.10)=0.5;(xi-)(Yi-)=-2×0.44-1×0.26+1×(-0.26)+2×(-0.4)=-2.2,(xi-)2=4+1+0+1+4=10,所以==-=-0.22;=-=0.5+0.22×3=1.16,所以Y关于x的经验回归方程为Y^=-0.22x+1.16.(2)由题意,-0.22x+1.16≤0.4,解得x≥,因为x=lgu+7,所以lgu+7≥,解得u≥10-;所以估计A浓度至少要达到10-mol/L.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点3复数小题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点4平面向量小题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点5不等式小题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点8解三角形大题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点11数列的递推小题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点12数列的证明与通项大题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点13数列的通项与求和大题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点19概率小题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点20统计与统计案例小题突破(附解析)
新教材2024届高考数学二轮专项分层特训卷二命题点加强练命题点21概率及其分布大题突破(附解析)
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2023-12-26 04:20:02
页数:7
价格:¥2
大小:246.49 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划