首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
北京市丰台区2023-2024学年高二数学上学期期中试题B卷(Word版附答案)
北京市丰台区2023-2024学年高二数学上学期期中试题B卷(Word版附答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/25
2
/25
剩余23页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
丰台区2023-2024学年度第一学期期中练习高二数学(B卷)练习第Ⅰ卷(选择题共40分)一、选择题:共10小题,每小题4分.在每小题给出的四个选项中,选出符合题目要求的一项.1.直线倾斜角为()A.B.C.D.2.已知向量,,且,则()A.B.C.D.3.已知点是点在坐标平面内的射影,则点的坐标为()A.B.C.D.4.已知直线经过点,且与直线垂直,则直线方程为()A.B.CD.5.圆截轴所得弦的长度为()AB.C.D.6.若直线和直线的交点在第二象限,则的取值范围为()A.B.C.D.7.如图,在平行六面体中,若,则有序实数组() AB.C.D.8.已知直线:,:,若,则实数()A.B.C.或D.或9.已知平面,其中点,向量,则下列各点中在平面内的是()A.B.C.D.10.正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.如图,已知一个正八面体的棱长为2,,分别为棱,的中点,则直线和夹角的余弦值为() A.B. C.D.第Ⅱ卷(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.以为圆心,半径为2的圆的标准方程为_________.12.已知点,,,则______.13.已知直线经过点,且斜率为,则直线的一个方向向量为______.14.已知点为圆上一点,记为点到直线的距离.当变化时,的最大值为______.15.在长方体中,,,点是棱上的动点,给出下列4个结论:①;②;③若为中点,则点到直线的距离为;④存在点,使得平面.其中所有正确结论的序号是_________.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在中,,,.(1)求边所在直线的方程;(2)求边上的中线所在直线的方程.17.已知向量,,.(1)若,求实数的值; (2)求;(3)若,,不能构成空间向量的一个基底,求实数的值.18.如图,在四棱锥中,底面是正方形,,,是棱的中点.(1)求证://平面;(2)再从条件①、条件②这两个条件中选择一个作为已知,求平面与平面夹角的余弦值.条件①:平面平面;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.19.已知圆:.(1)求圆的圆心坐标以及半径;(2)求经过点的圆的切线方程;(3)若圆与圆:有公共点,求实数的取值范围.20.赵州桥,又名安济桥,位于河北省石家庄市赵县的洨河上,距今已有多年的历史,是保存最完整的古代单孔敞肩石拱桥,其高超的技术水平和不朽的艺术价值,彰显了中国劳动人民的智慧和力量.2023年以来,中国文旅市场迎来强劲复苏,某地一旅游景点为吸引游客,参照赵州桥的样式在景区兴建圆拱桥,该圆拱桥的圆拱跨度为,拱高为,在该圆拱桥的示意图中建立如图所示的平面直角坐标系.(1)求这座圆拱桥的拱圆的方程; (2)若该景区游船宽,水面以上高,试判断该景区游船能否从桥下通过,并说明理由.21.如图,在直三棱柱中,,,.,分别为棱,的中点,与交于点.(1)求直线与平面所成角的正弦值;(2)求直线到平面的距离;(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由. 丰台区2023-2024学年度第一学期期中练习高二数学(B卷)练习第Ⅰ卷(选择题共40分)一、选择题:共10小题,每小题4分.在每小题给出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角为()A.B.C.D.【答案】B【解析】【分析】直接根据倾斜角与斜率的关系即可.【详解】直线的斜率为,设其倾斜角为,则,又,故其倾斜角为.故选:B2.已知向量,,且,则()A.B.C.D.【答案】C【解析】【分析】由向量的共线定理即可求解.【详解】因为向量,,且,所以,即,可得,解得,所以.故选:C.3.已知点是点在坐标平面内的射影,则点的坐标为() A.B.C.D.【答案】A【解析】【分析】利用点在坐标平面内的射影坐标运算即可得解.【详解】解:∵点是点在坐标平面内的射影,∴点坐标为,故选:A.4.已知直线经过点,且与直线垂直,则直线的方程为()A.B.C.D.【答案】D【解析】【分析】把两直线的垂直关系转化为斜率的关系即可判断.【详解】已知直线的斜率所以垂直直线的斜率为而D项中的直线过点,且只有D中的直线的斜率为,故选:D.5.圆截轴所得弦的长度为()A.B.C.D.【答案】B【解析】【分析】利用圆的弦长公式:,其中为圆心到弦所在直线的距离,计算可求弦长.【详解】解:由圆的方程可知,圆心为,半径为,圆心到轴的距离为,则. 故选:B6.若直线和直线的交点在第二象限,则的取值范围为()A.B.C.D.【答案】D【解析】【分析】联立两直线方程求出交点,即可根据第二象限的特征求解.【详解】,所以交点为,由于在第二象限,所以,所以的取值范围为,故选:D7.如图,在平行六面体中,若,则有序实数组()A.B. C.D.【答案】C【解析】【分析】根据空间向量的加减运算,结合空间向量的基本定理即可求得答案.【详解】由题意得,结合可得,故,故选:C8.已知直线:,:,若,则实数()A.B.C.或D.或【答案】A【解析】【分析】若:,:,当时,,代入后需验证,排除两直线重合的情况.【详解】因为,所以,即:,,解得:或,当时,:,:,符合题意;当时,:,即:,:,此时与重合,舍去.故选:A9.已知平面,其中点,向量,则下列各点中在平面内的是()A.B. C.D.【答案】B【解析】【分析】结合各个选项分别求出,计算值是否为0,从而得出结论.【详解】对于A,,所以,故点不在平面内,故A错误;对于B,,所以,故点在平面内,故B正确;对于C,,所以,故点不在平面内,故C错误;对于D,,所以,故点不平面内,故D错误.故选:B.10.正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.如图,已知一个正八面体的棱长为2,,分别为棱,的中点,则直线和夹角的余弦值为() A.B.C.D.【答案】D【解析】【分析】根据题意得到,,然后由向量的数量积公式分别求出 ,结合向量的夹角运算公式,即可求解.【详解】如图所示:由题意,可得,,又由正八面体的棱长都是2,且各个面都是等边三角形,在中,由,可得,所以,所以;;;所以,即直线和夹角的余弦值为. 故选:D.【点睛】关键点点睛:选取适当的基底向量,由已知条件可以求出它们的模以及两两之间的夹角,所以只需把分解,然后由向量的夹角公式即可求解.第Ⅱ卷(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.以为圆心,半径为2的圆的标准方程为_________.【答案】.【解析】【分析】根据圆心及坐标即得.【详解】由题可得圆的标准方程为.故答案为:.12.已知点,,,则______.【答案】【解析】【分析】根据向量的坐标表示法结合向量的减法运算即可求解【详解】根据已知可得:,,因此可得:.故答案为:13.已知直线经过点,且斜率为,则直线的一个方向向量为______.【答案】(答案不唯一)【解析】【分析】根据直线的斜率与方向向量之间的关系可得出直线的斜率.【详解】不妨令直线的一个方向向量为,则,所以可以取,则,此时直线的一个方向向量为(答案不唯一)故答案为:(答案不唯一) 14.已知点为圆上一点,记为点到直线的距离.当变化时,的最大值为______.【答案】3【解析】【分析】根据直线方程,求得该直线的定点,利用点到过定点直线以及点到圆上点距离的性质,可得答案.【详解】由直线方程,则该直线过定点,易知圆上任意定点到该直线的最大距离就是该点到的距离,由圆的方程,则其圆心为,半径为,点到圆上点的最大距离为.故答案为:.15.在长方体中,,,点是棱上的动点,给出下列4个结论:①;②;③若为中点,则点到直线的距离为;④存在点,使得平面.其中所有正确结论的序号是_________.【答案】②④【解析】【分析】根据空间向量基本定理即可判断①;以点为原点,建立空间直角坐标系,利用向量法即可判断②③④.【详解】对于①,, 而,所以,故①错误;如图,以点为原点,建立空间直角坐标系,设,则,故,所以,所以,故②正确;若平面,又平面,所以,,则,则,解得,所以存在点,使得,又平面,所以当时,平面,所以存在点,使得平面,故④正确;对于③,若为中点,则,故,则,所以,所以点到直线的距离为为,故③错误.故答案为:②④. 三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在中,,,.(1)求边所在直线的方程;(2)求边上的中线所在直线的方程.【答案】(1)(2)【解析】【分析】(1)利用两点之间的斜率公式求出斜率,然后利用直线的点斜式方程求解即可;(2)利用中点坐标公式和斜率公式结合直线的点斜式方程求解即可.【小问1详解】因为,,所以边所在直线的斜率.又因为该直线过点,所以边所在直线的方程为:,即.【小问2详解】设边上的中点为,则直线即为边上的中线.因为,,所以,又因为 所以直线的斜率.又因为该直线过点,所以直线的方程为:,即.17.已知向量,,.(1)若,求实数的值;(2)求;(3)若,,不能构成空间向量的一个基底,求实数的值.【答案】(1)(2)(3)【解析】【分析】(1)由可知,,再由数量积的坐标运算即可.(2)模长公式的坐标运算即可.(3)利用空间共面向量定理即可.【小问1详解】∵,∴,即,∴.【小问2详解】∵,,∴,∴【小问3详解】若,,不能构成空间向量的一个基底, 则与,共面,故存在唯一的实数对,使得,即,,∴,解得,∴.18.如图,在四棱锥中,底面是正方形,,,是棱的中点.(1)求证://平面;(2)再从条件①、条件②这两个条件中选择一个作为已知,求平面与平面夹角的余弦值.条件①:平面平面;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)根据中位线的性质得到,然后根据线面平行的判定定理证明即可;(2)利用空间向量的方法求角即可.【小问1详解】 证明:在底面中,连接交于点,可得为中点,连接.因为是中位线,所以,因为平面,平面,所以平面.【小问2详解】选①:平面平面.因为平面平面,平面平面,平面,,所以平面,因为平面,平面,所以,,又底面是正方形,所以两两相互垂直.如图建立空间直角坐标系,则,,.所以,,设平面的法向量为,则,即,令,则,.于是.又因为平面, 所以为平面的一个法向量.设平面与平面夹角为,则.所以平面与平面夹角的余弦值为.选②:.因为,,又底面是正方形所以两两相互垂直.如图建立空间直角坐标系,则,,.所以,,设平面的法向量为,则,即,令,则,.于是.又因为,平面,所以平面,所以为平面的一个法向量.设平面与平面夹角为,则.所以平面与平面夹角的余弦值为.19.已知圆:.(1)求圆的圆心坐标以及半径;(2)求经过点的圆的切线方程;(3)若圆与圆:有公共点,求实数的取值范围.【答案】(1)圆心的坐标为,半径 (2)或(3)【解析】【分析】(1)将圆的一般方程化简为圆的标准方程,即可求解;(2)讨论切线的斜率不存在和存在的两种情况求切线方程;(3)由题意转化圆心距和半径的关系式,再转化为不等式求实数的取值范围.【小问1详解】因为圆:,整理得所以圆心的坐标为,半径.【小问2详解】①当切线斜率不存在时,切线的方程为,符合题意;②当切线斜率存在时,设:,即.设圆心到切线的距离为,则.整理可得:,解得:所以切线的方程为,即.综合①②,切线的方程为或.【小问3详解】圆与圆的圆心距为,设圆的半径为,圆的半径为,若圆与圆:有公共点,则,即, 解得,故.20.赵州桥,又名安济桥,位于河北省石家庄市赵县的洨河上,距今已有多年的历史,是保存最完整的古代单孔敞肩石拱桥,其高超的技术水平和不朽的艺术价值,彰显了中国劳动人民的智慧和力量.2023年以来,中国文旅市场迎来强劲复苏,某地一旅游景点为吸引游客,参照赵州桥的样式在景区兴建圆拱桥,该圆拱桥的圆拱跨度为,拱高为,在该圆拱桥的示意图中建立如图所示的平面直角坐标系.(1)求这座圆拱桥的拱圆的方程;(2)若该景区游船宽,水面以上高,试判断该景区游船能否从桥下通过,并说明理由.【答案】(1)(2)可以从桥下通过,理由见解析【解析】【分析】(1)设这座圆拱桥的拱圆的一般方程为,将,,,代入化简即可得出答案;(2)将当代入圆的方程求出,与相比即可得出答案.【小问1详解】设这座圆拱桥的拱圆的一般方程为,因为该拱圆过,,,所以,解得.所以拱圆的一般方程为,即.【小问2详解】 当时,,得所以该景区游船可以从桥下通过.21.如图,在直三棱柱中,,,.,分别为棱,的中点,与交于点.(1)求直线与平面所成角的正弦值;(2)求直线到平面的距离;(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.【答案】(1)(2)(3)存在,【解析】【分析】(1)由直三棱柱的性质以及可证明两两相互垂直,以为原点建立空间直角坐标系,空间向量法计算直线与平面所成角的正弦值.(2)利用线面平行的判定定理可证明平面,从而直线到平面的距离等于点到平面的距离,空间向量法计算点到平面的距离即可. (3)假设存在点,可设,计算向量,由(2)可知平面的法向量,利用空间向量法计算向量求解,可得出结果.【小问1详解】解:在直三棱柱中,底面,所以,又因为,所以两两相互垂直.如图建立空间直角坐标系,则,,,.所以,,.设平面的法向量为,则 即令,则,.于是.所以.设直线与平面所成角为,所以,故直线与平面所成角的正弦值为. 【小问2详解】在侧面中,连接交于点,可知为中点,连接.因为是的中位线,所以,又因为平面,平面,所以平面.所以直线到平面的距离等于点到平面的距离.又因为,所以,设点到平面的距离为,则,所以直线到平面的距离为.【小问3详解】线段上存在点,点为上靠近点的三等分点,满足平面,证明如下:设, 因,,所以,所以.由(1)知平面的一个法向量为,因为平面,所以,即,解得:,所以线段上存在点,点为上靠近点的三等分点,满足平面.【点睛】结论点睛:(1)若直线的方向向量为,平面的法向量为,直线与平面所成的角为,则;(2)平面的法向量为,平面外一点,在平面内找一点,连接,则点到平面的距离为:;(3)若直线的方向向量为,平面的法向量为,若平面,则.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
北京市丰台区2022-2023学年高二语文上学期期末试题(Word版附解析)
北京市丰台区2022-2023学年高二数学下学期期中练习试题(B卷)(Word版附解析)
北京市丰台区2022-2023学年高二英语上学期期末试题(Word版附解析)
北京市丰台区2021-2022学年高二生物上学期期中(B)试题(Word版附解析)
北京市丰台区2021-2022学年高二政治上学期期中试题(B)(Word版附解析)
北京市丰台区2023-2024学年高一语文上学期期中考试试卷(B卷)(Word版附答案)
北京市丰台区2023-2024学年高二语文上学期期中试题A卷(Word版附答案)
北京市丰台区2023-2024学年高二语文上学期期中试题B卷(Word版附答案)
北京市丰台区2023-2024学年高一数学上学期期中考试试卷(B卷)(Word版附解析)
北京市丰台区2023-2024学年高二数学上学期期中试题A卷(Word版附答案)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-11-23 16:25:02
页数:25
价格:¥2
大小:1.24 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划