首页

北京师大附中高二(上)期中数学试卷(理科)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/25

2/25

剩余23页未读,查看更多内容需下载

2022-2022学年北京师大附中高二(上)期中数学试卷(理科) 一.选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.线段AB在平面α内,则直线AB与平面α的位置关系是(  )A.AB⊂αB.AB⊄αC.由线段AB的长短而定D.以上都不对2.垂直于同一条直线的两条直线一定(  )A.平行B.相交C.异面D.以上都有可能3.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线(  )A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内4.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为(  )A.1:2:3B.2:3:4C.3:2:4D.3:1:25.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为(  )A.x﹣2y+7=0B.2x+y﹣1=0C.x﹣2y﹣5=0D.2x+y﹣5=06.平面α与平面β平行的条件可以是(  )A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行7.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为(  )24/25A.B.C.D.8.下列命题中错误的是(  )A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所在过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形 二.填空题:(本大题共6小题,每小题5分,共30分).9.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是      .10.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是      .11.正方体ABCD﹣A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为      .12.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有      个直角三角形.13.如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是      .24/2514.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.①若AC=BD,则四边形EFGH是      ;②若AC⊥BD,则四边形EFGH是      . 三.解答题:(本大题共3小题,共30分)15.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.16.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.24/25 四.填空题:(本大题共6小题,每小题5分,共30分).18.正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为      .19.二面角α﹣l﹣β内一点P到平面α,β和棱l的距离之比为1::2,则这个二面角的平面角是      度.20.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是      .21.直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为      .22.圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖.A点正对面的外壁(不是A点的外壁)距杯底2cm的点B处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少      cm.(不计杯壁厚度与小虫的尺寸)23.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为      . 五.解答题:(本大题共2小题,共20分).24.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.24/2525.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置. 2022-2022学年北京师大附中高二(上)期中数学试卷(理科)参考答案与试题解析 一.选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.线段AB在平面α内,则直线AB与平面α的位置关系是(  )A.AB⊂αB.AB⊄αC.由线段AB的长短而定D.以上都不对【考点】平面的基本性质及推论.24/25【专题】证明题.【分析】线段AB在平面α内,则直线AB上所有的点都在平面α内,从而即可判断直线AB与平面α的位置关系.【解答】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上. 2.垂直于同一条直线的两条直线一定(  )A.平行B.相交C.异面D.以上都有可能【考点】空间中直线与直线之间的位置关系.【专题】分类讨论.【分析】根据在同一平面内两直线平行或相交,在空间内两直线平行、相交或异面判断.【解答】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系. 3.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线(  )A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内【考点】空间中直线与平面之间的位置关系.【专题】综合题.24/25【分析】通过假设过点P且平行于l的直线有两条m与n的出矛盾,由题意得m∥l且n∥l,这与两条直线m与n相交与点P相矛盾,又因为点P在平面内所以点P且平行于l的直线有一条且在平面内.【解答】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 4.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为(  )A.1:2:3B.2:3:4C.3:2:4D.3:1:2【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题.【分析】由已知中圆柱、圆锥的底面直径和高都等于球的直径,我们设出球的半径,代入圆柱、圆锥、球的体积公式,计算出圆柱、圆锥、球的体积即可得到答案.【解答】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D24/25【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键. 5.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为(  )A.x﹣2y+7=0B.2x+y﹣1=0C.x﹣2y﹣5=0D.2x+y﹣5=0【考点】直线的一般式方程;两条直线平行的判定.【专题】计算题.【分析】由题意可先设所求的直线方程为x﹣2y+c=0再由直线过点(﹣1,3),代入可求c的值,进而可求直线的方程【解答】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0. 6.平面α与平面β平行的条件可以是(  )A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行【考点】平面与平面平行的判定.【专题】证明题.【分析】当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选A、B,在两个平行平面内的直线可能平行,也可能是异面直线,故不选C,利用排除法应选D.24/25【解答】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.当直线a⊂α,直线b⊂β,且a∥β时,直线a和直线b可能平行,也可能是异面直线,故不选C.当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,故选D.【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况. 7.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为(  )A.B.C.D.【考点】简单空间图形的三视图.【专题】立体几何.【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.24/25【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 8.下列命题中错误的是(  )A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所在过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形【考点】旋转体(圆柱、圆锥、圆台).【专题】对应思想;分析法;立体几何.【分析】对于A,B,计算出截面面积与轴截面面积比较大小即可判断,对于C,D,利用旋转体的结构特征进行分析判断.【解答】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.24/25 二.填空题:(本大题共6小题,每小题5分,共30分).9.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 50π .【考点】球内接多面体;球的体积和表面积.【专题】计算题.【分析】由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积.【解答】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力. 10.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 x﹣y﹣2=0 .【考点】两条直线垂直与倾斜角、斜率的关系;中点坐标公式.【专题】计算题.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:直线AB的斜率kAB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,故答案为x﹣y﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.24/25 11.正方体ABCD﹣A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为 平行 .【考点】平面与平面之间的位置关系.【专题】常规题型.【分析】根据正方体中相应的对角线之间的平行关系,我们易得到平面AB1D1和平面BC1D内有两个相交直线相互平行,由面面平行的判定定理,我们易得到平面AB1D1和平面BC1D的位置关系.【解答】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法. 12.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有 4 个直角三角形.【考点】棱锥的结构特征.【专题】证明题.【分析】本题利用线面垂直,判定出线线垂直,进而得到直角三角形,只需证明直线BC⊥平面PAC问题就迎刃而解了.【解答】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.24/25故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键. 13.如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是  .【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】由题意图形折叠为三棱锥,直接求出三棱柱的体积即可.【解答】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力. 14.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.①若AC=BD,则四边形EFGH是 菱形 ;②若AC⊥BD,则四边形EFGH是 矩形 .【考点】棱锥的结构特征.【专题】证明题.【分析】①结合图形,由三角形的中位线定理可得EF∥AC,GH∥AC且EF=AC,GH=AC,由平行四边形的定义可得四边形EFGH是平行四边形,再由邻边相等地,得到四边形EFGH是菱形.24/25②由①知四边形EFGH是平行四边形,再由邻边垂直得到四边形EFGH是矩形.【解答】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC∴四边形EFGH是平行四边形又∵AC=BD∴EF=FG∴四边形EFGH是菱形.②由①知四边形EFGH是平行四边形又∵AC⊥BD,∴EF⊥FG∴四边形EFGH是矩形.故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题. 三.解答题:(本大题共3小题,共30分)15.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.【考点】与直线关于点、直线对称的直线方程.【专题】方程思想;综合法;直线与圆.【分析】设点A′的坐标为(m,n),求得A′A的中点B的坐标并代入直线l的方程得到①,再由线段A′A和直线l垂直,斜率之积等于﹣1得到②,解①②求得m,n的值,即得点A′的坐标.【解答】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),24/25则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件. 16.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】立体几何.【分析】(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD即可.(2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD.【解答】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.24/25(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型. 17.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.【考点】用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.【专题】空间位置关系与距离;空间角.【分析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;24/25(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.【解答】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,24/25∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力. 四.填空题:(本大题共6小题,每小题5分,共30分).18.正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为 cm2 .【考点】棱柱、棱锥、棱台的侧面积和表面积.【专题】计算题;转化思想;综合法;立体几何.【分析】作出正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.根据正六棱台的性质求出OC,O1C1,CC1和上、下底面周长,由此能求出正六棱台的侧面积.【解答】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.24/25根据正六棱台的性质得OC=,O1C1==,∴CC1==.又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养. 19.二面角α﹣l﹣β内一点P到平面α,β和棱l的距离之比为1::2,则这个二面角的平面角是 75 度.【考点】二面角的平面角及求法.【专题】空间角.【分析】点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.利用点P到α,β和棱l的距离分别为1::2,即可求二面角α﹣l﹣β的大小.24/25【解答】解:点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.当点P在二面角α﹣l﹣β的内部时,如图,A、C、B、P四点共面,∠ACB为二面角的平面角,由题设条件,点P到α,β和棱l的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.故答案为:75.【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键. 20.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是  .【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】利用正方体的体积减去8个三棱锥的体积,求解即可.【解答】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力. 24/2521.直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为  .【考点】直线的两点式方程.【专题】计算题.【分析】先求出BD的中点,再求出斜率,用斜截式求直线的方程.【解答】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式. 22.圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖.A点正对面的外壁(不是A点的外壁)距杯底2cm的点B处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 10 cm.(不计杯壁厚度与小虫的尺寸)【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;综合法;立体几何.【分析】作出圆柱的侧面展开图,找到A点关于茶杯口的对称点A′,则A′A在展开图中的直线距离即为最短距离.【解答】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,则A′A=4cm,BC=6cm,∴A′C=8cm,∴A′B==10cm.故答案为:10.24/25【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决. 23.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为  .【考点】球内接多面体;棱柱、棱锥、棱台的体积.【专题】计算题.【分析】过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则当球的直径通过AB与CD的中点时,h最大为2,从而得到四面体ABCD的体积的最大值即可.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题. 24/25五.解答题:(本大题共2小题,共20分).24.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.【考点】根据实际问题选择函数类型.【专题】计算题.【分析】设出所截等腰三角形的底边边长为xcm,在直角三角形中根据两条边长利用勾股定理做出四棱锥的高,表示出四棱锥的体积,根据实际意义写出定义域.【解答】解:如图,设所截等腰三角形的底边边长为xcm,在Rt△EOF中,,∴,∴依题意函数的定义域为{x|0<x<10}【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围. 25.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;24/25(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.【考点】直线与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)由题意可知:平面AA1C1C⊥平面ABC,根据平面与平面垂直的性质定理可以得到,只要证明A1O⊥AC就行了.(2)此小题由于直线A1C与平面A1AB所成角不易作出,再由第(1)问的结论可以联想到借助于空间直角坐标系,设定参数,转化成法向量n与所成的角去解决(3)有了第(2)问的空间直角坐标系的建立,此题解决就方便多了,欲证OE∥平面A1AB,可以转化成证明OE与法向量n垂直【解答】解:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,所以得:24/25则有:.设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以..因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(Ⅲ)设,即,得所以,得,令OE∥平面A1AB,得,即﹣1+λ+2λ﹣λ=0,得,即存在这样的点E,E为BC1的中点.【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力24/25

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:23:04 页数:25
价格:¥3 大小:364.48 KB
文章作者:U-336598

推荐特供

MORE