首页

三年模拟一年创新2022届高考数学复习第十章第一节排列与组合理全国通用

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

A组 专项基础测试三年模拟精选一、选择题1.(2022·山东滨州模拟)七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有(  )A.240种B.192种C.120种D.96种解析 分三步:先排甲,有一种方法;再排乙、丙,排在甲的左边或右边各有4种方法;再排其余4人,有A种方法,故共有2×4×A=192(种).故选B.答案 B2.(2022·河南信阳模拟)某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有(  )A.36种B.30种C.24种D.6种解析 从4人中选出两个人作为一个元素有C种方法,同其他两个元素在三个位置上排列CA=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A种结果,∴不同的参赛方案共有36-6=30,故选B.答案 B二、填空题3.(2022·衡水模拟)20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.解析 先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有C=120(种)方法.答案 1204.(2022·陕西西安二模)某地奥运火炬接力传递路线共分6段,4\n传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种(用数字作答).解析 甲传第一棒,乙传最后一棒,共有A种方法.乙传第一棒,甲传最后一棒,共有A种方法.丙传第一棒,共有C·A种方法.由分类加法计数原理得,共有A+A+C·A=96种方法.答案 96一年创新演练5.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”“舞者轮滑俱乐部”“篮球之家”“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为(  )A.72B.108C.180D.216解析 设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:①从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分别分配到其他三个社团中,有CA种方法,这时共有CCA种参加方法.②从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法.综合①②,共有CCA+CA=180种参加方法.答案 C6.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学恰有2名同学是来自于同一年级的乘坐方式共有(  )A.24种B.18种C.48种D.36种解析 若大一的孪生姐妹乘坐甲车,则此时甲车中的另外2人分别来自不同年级,有CCC=12种;若大一的孪生姐妹不乘坐甲车,则2名同学来自一个年级,另外2名分别来自两个年级,有CCC=12种.所以共有24种乘车方式,选A.4\n答案 AB组 专项提升测试三年模拟精选一、选择题7.(2022·威海期末)从0,1,2,3,4,5六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位奇数,有多少种取法(  )A.72B.84C.144D.180解析 若不选0,则有CCA=36,若选0,则有CCCCA=48,所以共有48+36=84种,所以选B.答案 B二、填空题8.(2022·天津模拟)从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数y=ax2+bx+c的系数a,b,c的取值,则共能组成________个不同的二次函数.解析 a,b,c中不含0时,有A个;由于a≠0,当b、c中含有0时,有2A(个).故共有A+2A=294(个)不同的二次函数.答案 2949.(2022·潍坊检测)张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为________(用数字作答).解析 第一步:将两位爸爸排在两端有2种排法;第二步:将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有A种排法;第三步,将两个小孩排序有2种排法.故总的排法有2×2×A=24(种).答案 24三、解答题10.(2022·苏州调研)已知10件不同的产品中有4件次品,现对它们一一测度,直至找到所有4件次品为止.(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?(2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法?4\n解 (1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回地逐个抽取测试,第2次测到第一件次品有4种方法;第8次测到最后一件次品有3种方法;第3至第7次抽取测到最后两件次品共有A种方法;剩余4次抽到的是正品,共有AAA=86400种抽法.(2)检测4次可测出4件次品,不同的测试方法有A种,检测5次可测出4件次品,不同的测试方法有4AA种;检测6次测出4件次品或6件正品,则不同的测试方法共有4AA+A种.由分类计数原理,知满足条件的不同测试方法的种数为A+4AA+4AA+A=8520.一年创新演练11.设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠∅的集合S的个数是(  )A.57B.56C.49D.8解析 满足S⊆A的集合S的个数为26=64,满足S⊆A且S∩B=∅的集合S的个数为23=8,所以集合S的个数是64-8=56.答案 B4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:01:24 页数:4
价格:¥3 大小:252.10 KB
文章作者:U-336598

推荐特供

MORE