首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
【中考12年】浙江省杭州市2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】浙江省杭州市2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/18
2
/18
剩余16页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
[中考12年]杭州市2022-2022年中考数学试题分类解析专题3:方程(组)和不等式(组)一、选择题1.(2022年浙江杭州3分)方程的实数根有【】.A.1个B.2个C.3个D.4个2.(2022年浙江杭州3分)已知2是关于x的方程的一个解,则的值是【】.(A)3(B)4(C)5(D)63.(2022年浙江杭州3分)不等式组的解在数轴上可表示为【】.(A)(B)18\n(C)(D)【答案】A。不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。因此,不等式组的解在数轴上可表示为A。故选A。4.(2022年浙江杭州3分)设,是关于的方程的两根,,是关于的方程的两根,则,的值分别等于【】(A)1,-3(B)1,3(C)-1,-3(D)-1,3【分析】∵,是关于的方程的两根,∴。又∵,是关于的方程的两根,∴,即。18\n将代入,得,解得。故选C。5.(2022年浙江杭州3分)某种型号的空调器经过3次降价,价格比原来下降了30%,则其平均每次下降的百分比(精确到1%)应该是【】(A)26.0%(B)33.1%(C)8.5%(D)11.2%6.(2022年浙江杭州3分)在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是【】(A)1.6秒(B)4.32秒(C)5.76秒(D)345.6秒7.(2022年浙江杭州3分)甲、乙两人分别从两地同时出发,若相向而行,则小时相遇;若同向而行,则小时甲追上乙。那么甲的速度是乙的速度的【】18\n(A)倍(B)倍(C)倍(D)倍8.(2022年浙江杭州3分)方程的正根的个数为【】(A)0个(B)1个(C)2个(D)3个【答案】A。【考点】曲线上点的坐标与方程的关系,二次函数和反比例函数的图象,数形结合思想的应用。【分析】根据曲线上点的坐标与方程的关系,求方程的正根的个数,可化为函数和图象在x>0时的交点个数问题。如图,作函数和的图象可知,二者在x>0时没有交点。∴方程的正根的个数为0个。故选A。9.(2022年浙江杭州3分)如果2022-200.5=,那么x等于【】(A)1814.55(B)1824.55(C)1774.45(D)1784.45【答案】B。18\n10.(2022年浙江杭州3分)若t是一元二次方程的根,则判别式和完全平方式M=的大小关系是【】(A)△=M(B)△>M(C)△<M(D)大小关系不能确定11.(2022年浙江杭州大纲卷3分)是方程ax-y=3的解,则a的取值是【】A.5B.-5C.2D.112.(2022年浙江杭州大纲卷3分)已知与互为倒数,则满足条件的实数的个数是【】A.0B.1C.2D.3【答案】C。【考点】倒数,解分式方程。【分析】根据倒数定义,即两个式子的积是1,列出方程求解即可:18\n∵a与互为倒数,∴。解并检验得,a=2或a=-1。∴满足条件的实数的个数是2个。故选C。13.(2022年浙江杭州大纲卷3分)已知方程可以配方成的形式,那么可以配方成下列的【】A.B.C.D.14.(2022年浙江杭州课标卷3分)方程ax-y=3的解是,则a的取值是【】A.5B.-5C.2D.1【答案】A。【考点】二元一次方程的解,解一元一次方程。【分析】根据方程的解的定义,把这对数值代入方程,即可求出a的值:把代入方程ax-y=3,得a-2=3,解得a=5。故选A。15.(2022年浙江杭州课标卷3分)已知方程可以配方成的形式,那么可以配方成下列的【】A.B.C.D.18\n16.(2022年浙江杭州3分)已知是方程的一个解,那么的值是【】A.1B.3C.-3D.-1【答案】A。【考点】二元一次方程的解,解一元一次方程。【分析】把x、y的值代入方程即可求出a的值:把代入,得,解得a=1。故选A。17.(2022年浙江杭州3分)方程x2+x–1=0的一个根是【】A.1–B.C.–1+D.18.(2022年浙江杭州3分)已知a,b为实数,则解可以为–2<x<2的不等式组是【】A.B.C.D.18\n19.(2022年浙江杭州3分)若,且≥2,则【】A.有最小值B.有最大值1C.有最大值2D.有最小值【答案】C。【考点】不等式的性质。【分析】由已知条件,根据不等式的性质求解:∵,∴=-b-2,b=-2-。又∵≥2b,∴-b-2≥2b,≥-4-2,移项,得-3b≥2,3≥-4,∴b≤<0,≥。由≥2b,得≤2(不等式的两边同时除以负数b,不等号的方向发生改变)。20.(2022年浙江杭州3分)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:18\n①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是【】 A.①② B.②③ C.②③④ D.①③④【答案】C。【考点】二元一次方程组的解,解一元一次不等式组。【分析】解方程组得出x、y的表达式,根据a的取值范围确定x、y的取值范围,逐一判断:解方程组,得。∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4。①不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,y=1﹣a≥1,已知0≤y≤4,故当x≤1时,1≤y≤4,结论正确。故选C。二、填空题1.(2022年浙江杭州4分)梯形上、下两底(上底小于下底)的差为6,中位线的长为5,那么上底和下底长各为▲.18\n2.(2022年浙江杭州4分)若方程组有两组相同的实数解,则m的取值是▲.3.(2022年浙江杭州4分)浙江万马篮球队某主力队员,在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了▲个两分球和▲个罚球。【答案】8;2。【考点】二元一次方程组的应用。4.(2022年浙江杭州4分)在关于x1,x2,x3的方程组中,已知,那么将x1,x2,x3从大到小排起来应该是▲18\n5.(2022年浙江杭州4分)两个数的和为6,差(注意不是积)为8,以这两个数为根的一元二次方程是▲。【答案】(答案不唯一)。【考点】开放型,一元二次方程根与系数的关系,解二元一次方程组。【分析】设这两个数分别为x、y,由题意得:,解得:。即-1、7为所求一元二次方程的两根。∴所求一元二次方程可以为,即(答案不唯一)。6.(2022年浙江杭州4分)三个同学对问题“若方程组的解是,求方程组的解。”提出各自的想法。甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”。参考他们的讨论,你认为这个题目的解应该是▲。【答案】。18\n7.(2022年浙江杭州4分)已知关于x的方程的解是正数,则m的取值范围为▲。【答案】m>-6且m≠-4。【考点】分式方程的解。【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围:原方程整理得:2x+m=3x-6,解得:x=m+6。∵x>0,∴m+6>0,即m>-6①。又∵原式是分式方程,所以,x≠2,即m+6≠2,所以m≠-4②。由①②可得,则m的取值范围为m>-6且m≠-4。8.(2022年浙江杭州4分)已知,若b=2﹣a,则b的取值范围是▲.18\n三、解答题1.(2022年浙江杭州8分)3月12日是植树节,初三年级170名学生去参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵.正好使每个树坑种上一棵树,问该年级的男女学生各有多少人?2.(2022年浙江杭州10分)若方程(p,q是实数)没有实数根,(1)求证:;(2)试写出上述命题的逆命题;判断(2)中的逆命题是否正确,若正确请加以证明;若不正确,请举一反例说明.【答案】解:(1)证明:∵方程(p,q是实数)没有实数根,∴方程根的判别式,得。∴。18\n∴成立。(2)该命题的逆命题为:如果,则方程(p,q是实数)没有实数根.(3)(2)中的逆命题不正确,如当p=1,q=-1时,,但原方程有实数根x=-1。3.(2022年浙江杭州10分)已知某二次项系数为1的一元二次方程的两个实数根为p、q,且满足关系式,试求这个一元二次方程.【考点】一元二次方程根与系数的关系,解二元二次方程组。【分析】设出所求方程,然后将已知方程组变形,利用根与系数的关系即可求出方程的形式。4.(2022年浙江杭州10分)解方程组:18\n【考点】换元法解无理方程。【分析】根号内是x+2和y-1,含有两个未知数,可把第二个方程也整理为含x+2和y-1的式子,用换元法求解。5.(2022年浙江杭州10分)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元。(1)问:该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值)?(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年的年平均盈利额(精确到0.1万元)。【答案】解:(1)设运输第x年开始盈利,则有72x-40x-120>0,即32x>120,∴x>3.75。∵x为正整数,∴x最小值应取4。∴该船第4年开始盈利。(2)根据题意得:[(72-40)×15+5-120]÷15=24.333≈24.3。∴运输15年的年平均盈利额约为24.3万元。【考点】一元一次不等式的应用。18\n【分析】(1)利用总收入-总支出-成本>0,列不等式即可求解。(2)所求关系式为:(总收入-总支出-成本+5)÷15,据此列式即可求解。6.(2022年浙江杭州10分)宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班学生,由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生要多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名?7.(2022年浙江杭州大纲卷8分)已知,,并且。请求出x的取值范围,并将这个范围在数轴上表示出来。8.(2022年浙江杭州课标卷8分)已知,,并且。请求出x的取值范围,并将这个范围在数轴上表示出来。18\n9.(2022年浙江杭州10分)暑假期间小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程。如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里;如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间,求这辆汽车原来每天计划的行程范围(单位:公里)10.(2022年浙江杭州6分)课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几头(只)?如果假设鸡有只,兔有只,请你列出关于,的二元一次方程组,并写出你求解这个方程组的方法。18\n11.(2022年浙江杭州10分)在杭州市中学生篮球赛中,小方共打了10场球。他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高。如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?【分析】(1)根据前5场比赛的得分相等列式即可。(2)根据前9场比赛的平均得分y比前5场比赛的平均得分x要高列不等式求解即可。(3)根据(2)的结论,由加的10场比赛的平均得分超过18分求得结果。18
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
北京市2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】重庆市2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】海南省2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】浙江省衢州市2001-2022年中考数学试题分类解析 专题03 方程(组)和不等式(组)
【中考12年】浙江省绍兴市2001-2022年中考数学试题分类解析 专题03 方程(组)和不等式(组)
【中考12年】浙江省温州市2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】浙江省台州市2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】安徽省2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】天津市2001-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【2022版中考12年】浙江省杭州市2002-2022年中考数学试题分类解析 专题3 方程(组)和不等式(组)
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 21:14:19
页数:18
价格:¥3
大小:761.39 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划