湖南省2022年中考数学总复习专题训练01与函数图象有关的问题练习
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
与函数图象有关的问题01与函数图象有关的问题1.[2022·齐齐哈尔]已知等腰三角形的周长是10,底边长y是腰长x的函数.如图ZT1-1所示图象中,能正确反映y与x之间函数关系的图象是( )图ZT1-12.已知一次函数y=kx+b的图象如图ZT1-2所示,那么正比例函数y=kx和反比例函数y=bx在同一坐标系的图象可能是图ZT1-3中的( )图ZT1-2图ZT1-33.[2022·义乌]如图ZT1-4,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数( )7\n图ZT1-4A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小4.[2022·咸宁]甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图ZT1-5所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有( )图ZT1-5A.1个B.2个C.3个D.4个5.[2022·攀枝花]如图ZT1-6,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°.设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是图ZT1-7中的( )图ZT1-67\n图ZT1-76.[2022·锦州]如图ZT1-8,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以2cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则如图ZT1-9所示图象能反映y与x之间关系的是( )图ZT1-8图ZT1-97.如图ZT1-10,反比例函数y=kx的图象经过二次函数y=ax2+bx图象的顶点-12,m(m>0),则有( )图ZT1-10A.a=b+2kB.a=b-2kC.k<b<0D.a<k<08.[2022·荆门]二次函数y=ax2+bx+c(a≠0)的大致图象如图ZT1-11所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的有( )7\n图ZT1-11A.1个B.2个C.3个D.4个9.[2022·黄石]如图ZT1-12,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,在矩形ABCD中,AB=2cm,BC=10cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是图ZT1-13中的( )图ZT1-12图ZT1-1310.[2022·天津]已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(-1,0),(0,3),其对称轴在y轴右侧,有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③-3<a+b<3.其中正确结论的个数为( )7\nA.0B.1C.2D.311.[2022·随州]如图ZT1-14所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=-x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a-b+c<0;③x(ax+b)≤a+b;④a<-1.其中正确的有( )图ZT1-14A.4个B.3个C.2个D.1个12.[2022·安顺]如图ZT1-15,已知直线y=k1x+b与x轴、y轴分别相交于P,Q两点,与y=kx的图象相交于A(-2,m),B(1,n)两点,连接OA,OB,给出下列结论:①k1k2<0;②m+12n=0;③S△AOP=S△BOQ;④不等式k1x+b>kx的解集是x<-2或0<x<1.其中正确的结论的序号是 . 图ZT1-157\n参考答案1.D 2.D3.A [解析]观察图象可知,AB段是y随x的增大而增大,BC段是y随x的增大而减小,CD段是y随x的增大而增大,再根据A,B,C,D各点的坐标可知,当x<1时,y随x的增大而增大;当1<x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大.故选A.4.A [解析]由图象可得,甲步行的速度为240÷4=60(米/分),故①正确;乙走完全程用的时间为2400÷(16×60÷12)=30(分),故②错误,乙追上甲用的时间为16-4=12(分),故③错误;乙到达终点时,甲离终点的距离是2400-(4+30)×60=360(米),故④错误.故选A5.C [解析]如图,过点C作CD⊥y轴于点D,易证△AOB∽△CDA,所以OBAD=ABAC.由∠BAC=90°,∠ACB=30°,得ABAC=13,所以OBAD=13,即xy-1=13.整理,得y=3x+1(x>0).结合自变量的取值范围,可知y与x的函数关系的图象大致为C.6.D 7\n7.D [解析]∵二次函数图象的顶点为-12,m,∴-b2a=-12.∴a=b≠0.∴选项A,B均错误.∵-12×m=k,m=14a-12b,∴a=8k.∵抛物线的开口向下,∴a<0,∴a<k<0.即b<k<0,∴选项C不正确,选项D正确.故答案为D.8.B [解析]∵抛物线的顶点坐标(-2a,-9a),∴-b2a=-2a,4ac-b24a=-9a.∴b=4a,c=5a.∴抛物线的表达式为y=ax2+4ax-5a,∴4a+2b+c=4a+8a-5a=7a>0,故①正确.5a-b+c=5a-4a-5a=-4a<0,故②错误.∵抛物线y=ax2+4ax-5a交x轴于点(-5,0),(1,0),∴若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1,故③正确.若方程|ax2+bx+c|=1有四个根,则这四个根的和为-8,故④错误.故选B.9.A [解析]当点D位于PM上时,此时t=2.当0<t<2时,y=12t2;当点D位于PN时,此时t=4.当2<t<4时,y=2+2×(t-2)=2t-2;当4<t<6时,y=2+4+12(t-4)2=12(t-4)2+6.综上所述,选项A符合题意.10.C [解析]由抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(-1,0),(0,3),其对称轴在y轴右侧,可知图象开口向下,最大值大于3,所以图象不过(1,0),方程ax2+bx+c=2有两个不相等的实数根,-3<a+b<3.故选C.11.A12.②③④7
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)