首页

2025数学一轮总复习:课时分层作业70 用样本估计总体

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

课时分层作业(七十) 用样本估计总体一、单项选择题1.下面是某城市某日在不同观测点对细颗粒物(PM2.5)的观测值:396 275 268 225 168 166 176 173 188168 141 157若在此组数据中增加一个比现有的最大值大25的数据,下列数字特征没有改变的是(  )A.极差 B.中位数C.众数 D.平均数2.(2023·临沂一模)某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是(  )件数7891011人数37541A.8.5 B.9C.9.5 D.103.(2024·山西大同开学考试)一组数据按从小到大的顺序排列为1,3,5,6,m,10,12,13,若该组数据的中位数是极差的58,则该组数据的第60百分位数是(  )A.7.5 B.8C.9 D.9.54.(2024·天津模拟)为落实党中央的“三农”政策,某市组织该市所有乡镇干部进行了一期“三农”政策专题培训,并在培训结束时进行了结业考试.如图是该次考试成绩随机抽样样本的频率分布直方图.则下列关于这次考试成绩的估计错误的是(  )6/6 A.众数为82.5B.中位数为85C.平均数为86D.有一半以上干部的成绩在80~90分5.(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则(  )A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差6.(2024·安徽合肥模拟)若一组样本数据x1,x2,…,xn的平均数为10,另一组样本数据2x1+4,2x2+4,…,2xn+4的方差为8,则两组样本数据合并为一组样本数据后的平均数和方差分别为(  )A.17,54 B.17,48C.15,54 D.15,48二、多项选择题7.(2023·新高考Ⅰ卷)有一组样本数据x1,x2,…,x6,其中x1是最小值,x66/6 是最大值,则(  )A.x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差8.病毒研究所检测甲、乙两组实验小白鼠的某医学指标值,得到样本数据的频率分布直方图(如图所示),则下列结论正确的是(  )A.甲组数据中位数大于乙组数据中位数B.甲组数据平均数小于乙组数据平均数C.甲组数据平均数大于甲组数据中位数D.乙组数据平均数小于乙组数据中位数三、填空题9.(2023·辽宁葫芦岛二模)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如表(单位:环):甲108999乙1010799如果甲、乙只有1人能入选,则入选的最佳人选应是________.10.某校组织学生参与航天知识竞答活动,某班8位同学成绩如下:7,6,8,9,8,7,10,m.若去掉m,该组数据的第25百分位数保持不变,则整数m(1≤m≤10)的值可以是________(写出一个满足条件的m值即可).四、解答题11.(2024·湖南永州模拟)某地旅游主管部门为了更好地为游客服务,在景区随机发放评分调查问卷100份,并将问卷评分数据分成6组:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100],绘制如图所示频率分布直方图.6/6 (1)已知样本中分数在[80,85)的游客为15人,求样本中分数小于80的人数,并估计第75百分位数;(2)已知样本中男游客与女游客比例为3∶2,男游客样本的平均值为90,方差为10,女游客样本的平均值为85,方差为12,由样本估计总体,求总体的方差.12.(2024·云南昆明双基检测)某滨海城市沙滩风景秀丽,夏日美丽的海景和清凉的海水吸引了不少前来游玩的旅客.某饮品店通过公开竞标的方式获得卖现制饮品的业务,为此先根据前一年沙滩开放的160天的进入沙滩的人数,做前期的市场调查来模拟饮品店开卖之后的利润情况,考虑沙滩承受能力有限,超过1.4万人即停止预约.以下表格是160天内进入沙滩的每日人数(单位:万人)的频数分布表.人数/万[0,0.2)[0.2,0.4)[0.4,0.6)[0.6,0.8)[0.8,1.0)[1.0,1.2)[1.2,1.4]频数/天881624a4832(1)绘制160天内进入沙滩的每日人数的频率分布直方图(用阴影表示),并求出a的值和这组数据的65%分位数;6/6 (2)据统计,每10个进入沙滩的游客当中平均有1人会购买饮品,X(单位:个)为进入该沙滩的人数(X为10的整倍数.如有8006人,则X取8000).每杯饮品的售价为15元,成本为5元,当日未出售饮品当垃圾处理.若该店每日准备1000杯饮品,记Y为该店每日的利润(单位:元),求Y和X的函数关系式;(3)以频率估计概率,求该店在160天的沙滩开放日中利润不低于7000元的概率.13.(2024·浙南名校联考)某型合金钢生产企业为了合金钢的碳含量百分比在规定的范围值内,检验员在同一试验条件下,每天随机抽样10次,并测量其碳含量(单位:%).已知其产品的碳含量服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内10次抽样中其碳含量百分比在(μ-3σ,μ+3σ)之外的次数,求P(X≥1)及X的数学期望;(2)一天内的抽检中,如果出现了至少1次检测的碳含量在(μ-3σ,μ+3σ)之外,就认为这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是在一天中,检测员进行10次碳含量(单位:%)检测得到的测量结果:次数12345678910碳含量(%)0.310.320.340.310.300.310.320.310.330.32经计算得,x==0.317,s==0.011,其中xi6/6 为抽取的第i次的碳含量百分比(i=1,2,…,10).①用样本平均数x作为μ的估计值μ,用样本标准差s作为σ的估计值σ,利用估计值判断是否需对当天的生产过程进行检查?②若去掉x1,剩下的数的平均数和标准差分别记为μ1,σ1,试写出σ1的算式(用x,s,x1,μ1表示σ1).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ≤Z≤μ+3σ)≈0.9973,0.997310≈0.9733.6/6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-10-01 10:20:01 页数:6
价格:¥1 大小:235.01 KB
文章作者:180****8757

推荐特供

MORE