首页

2023版新高考数学一轮总复习第9章第2讲用样本估计总体课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/62

2/62

3/62

4/62

剩余58页未读,查看更多内容需下载

第九章统计成对数据的统计分析\n第二讲 用样本估计总体\n知识梳理·双基自测考点突破·互动探究名师讲坛·素养提升\n知识梳理·双基自测\n知识点一 总体取值规律的估计频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,从中可以看到整个样本数据的频率分布情况.绘制频率分布直方图的步骤为:①__________;②__________________;③______________;④________________;⑤____________________.求极差决定组距与组数将数据分组列频率分布表画频率分布直方图\n\n\n\n\n题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.()(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.()(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.()√×√\n(4)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.()(5)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.()(6)对单峰频率直方图,和中位数相比,平均数总是在“长尾巴”那边.()√×√\n题组二 走进教材2.(多选题)(必修2P222T2改编)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A、B、C、D四地新增疑似病例数据信息如下,一定符合没有发生大规模群体感染标志的是()A.A地:中位数为2,极差为5B.B地:总体平均数为2,众数为2C.C地:总体平均数为1,总体方差大于0D.D地:总体平均数为2,总体方差为3AD\n\n3.(必修2P197T1改编)从某小区抽取100户居民用户进行用电量调查,发现他们的用电量都在50~350kw·h之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,则直方图中x=____________,在被调查的用户中,用电量的平均值为_______kw·h,用电量落在区间[100,250)内的户数为______.0.004418670\n[解析](0.0024+0.0036+0.0060+x+0.0024+0.0012)×50=1,计算得x=0.0044.50×(75×0.0024+125×0.0036+175×0.006+225×0.0044+275×0.0024+325×0.0012)=186.(0.0036+0.0060+0.0044)×50×100=70.\n题组三 走向高考4.(2021·全国高考)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同CD\n[解析]A:E(y)=E(x+c)=E(x)+c且c≠0,故平均数不相同,错误;B:若第一组中位数为xi,则第二组的中位数为yi=xi+c,显然不相同,错误;C:D(y)=D(x)+D(c)=D(x),故方差相同,正确;D:由极差的定义知:若第一组的极差为xmax-xmin,则第二组的极差为ymax-ymin=(xmax+c)-(xmin+c)=xmax-xmin,故极差相同,正确;故选CD.\n5.(2021·天津高考)从某网络平台推荐的影视作品中抽取400部,统计其评分分数,将所得400个评分数据分为8组:[66,70)、[70,74)、…、[94,98],并整理得到如下的频率分布直方图,则评分在区间[82,86)内的影视作品数量是()A.20B.40C.64D.80D[解析]由频率分布直方图可知,评分在区间[82,86)内的影视作品数量为400×0.05×4=80.故选D.\n考点突破·互动探究\n(1)(2021·江西赣州十四县联考)中央电视台播出《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如右所示:例1考点一频率分布直方图——自主练透组号分组频数频率第1组[160,165)0.100笫2组[165,170)①第3组[170,175)20②第4组[175,180)200.200第5组[180,185)100.100合计1001.00\n(ⅰ)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示).(ⅱ)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3,4,5组中用分层抽样抽取5名选手进入第二轮面试,则第3,4,5组每组各抽取多少名选手进入第二轮面试?(ⅲ)在(ⅱ)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官A面试,求第4组至少有一名选手被考官A面试的概率.\n(2)(2021·湖北恩施州质检)为了解人们对环保知识的认知情况,某调查机构对A地区随机选取n个居民进行了环保知识问卷调查(满分为100分),并根据问卷成绩(不低于60分记为及格)绘制成如图所示的频率分布直方图(分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六组),若问卷成绩最后三组频数之和为360,则下列结论正确的是__________.②③④\n①n=480②问卷成绩在[70,80)内的频率为0.3③a=0.030④以样本估计总体,若对A地区5000人进行问卷调查,则约有1250人不及格\n②处应填的数为1-(0.1+0.4+0.2+0.1)=0.200.频率分布直方图如图所示.(ⅱ)因为第3,4,5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试时,每组抽取的人数分别为:\n\n\n应用频率分布直方图时的注意事项用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)频率分布直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.\n〔变式训练1〕(1)(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.36B\n(2)(2021·山西适应性考试)某病毒引起的肺炎的潜伏期平均为7天左右,短的约2~3天,长的约10~14天,甚至有20余天.某医疗机构对400名确诊患者的潜伏期进行统计,整理得到以下频率分布直方图.根据该直方图估计:要使90%的患者显现出明显病状,需隔离观察的天数至少是()A.12B.13C.14D.15C\n\n(1)(2021·湖南湘潭高三月考)某工厂组织员工进行专业技能比赛,下图是7位评委对甲、乙两位员工评分(满分10分)的雷达图.根据图中信息,下列说法正确的个数是()①甲得分的中位数大于乙得分的中位数②甲得分的众数大于乙得分的众数③甲得分的平均数与乙得分的平均数相等④甲得分的极差小于乙得分的极差A.1B.2C.3D.4例2B考点二样本数字特征\n(2)(2021·广西高三模拟)甲、乙、丙、丁四位同学在高中学业水平模拟测试中的成绩分布分别为下面的频率分布直方图,估计他们的中位数和平均分(同一组中的数据用该组区间的中点值为代表),正确的是()A.乙的中位数最高,甲的平均分最高B.甲的中位数最高,丙的平均分最高C.丁的中位数最高,乙的平均分最高D.丁的中位数最高,丁的平均分最高D\nC\n\n(2)甲、乙、丙三位同学的成绩中位数都是80,丁的成绩中位数大于80;甲的平均成绩为65×0.1+75×0.4+85×0.4+95×0.1=6.5+30+34+9.5=80,乙的平均成绩为65×0.4+75×0.1+85×0.4+95×0.1=26+7.5+34+9.5=77,\n丙的平均成绩为65×0.3+75×0.2+85×0.2+95×0.3=19.5+15+17+28.5=80,丁的平均成绩为65×0.2+75×0.2+85×0.3+95×0.3=13+15+25.5+28.5=82.故选:D.\n\n[引申]本例(2)中方差最大的是______.丙\n(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数,中位数,众数描述其集中趋势,方差和标准差描述其波动大小.\n〔变式训练2〕(1)(2021·广西南宁市一模)某中学高三文科2班在每周的星期一、三、五的晚自习前都要用半个小时进行英语听力测试,一共30个小题,每个小题1分,共30分.测试完后,该班英语老师都会随机抽取一个小组进行现场评阅,下表是该班英语老师在某个星期一随机抽取一个小组进行现场评阅的得分情况:\n对这个小组的英语听力测试分数,有下面四种说法:①该小组英语听力测试分数的极差为12②该小组英语听力测试分数的中位数为21③该小组英语听力测试分数的平均数为21④该小组英语听力测试分数的方差为11其中说法正确的个数是()A.1B.2C.3D.4C\n(2)(多选题)(2022·河北邯郸期末)2021年7月1日是中国共产党建党100周年,某单位为了庆祝中国共产党建党100周年,组织了学党史、强信念、跟党走系列活动,对本单位200名党员同志进行党史测试并进行评分,将得到的分数分成6组:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100],得到如图所示的频率分布直方图。下列说法正确的是()A.a=0.040B.得分在[95,100]的人数为4人C.200名党员员工测试分数的众数约为87.5D.据此可以估计200名党员员工测试分数的中位数为85ACD\n\n\n(2022·四川成都诊断)某市环境保护局公布了该市A,B两个景区2014年至2020年各年的全年空气质量优良天数的数据.现根据这组数据绘制了如图所示的折线图,则由该折线图得出的下列结论中正确的是()例3考点三折线图\nA.景区A这七年的空气质量优良天数的极差为98B.景区B这七年的空气质量优良天数的中位数为283C.分别记景区A,B这七年的空气质量优良天数的众数为m1,m2,则m1>m2D.分别记景区A,B这七年的空气质量优良天数的标准差为s1,s2,则s1>s2\n[解析]对于A,景区A这七年的空气质量优良天数的极差为313-203=110,故选项A错误;对于B,景区B这七年的空气质量优良天数的中位数为266,故选项B错误;对于C,由折线图可知,m1=254,m2=262,显然m1<m2,故选项C错误;对于D,由折线图可知,景区A这七年的空气质量优良天数的数据波动要比景区B这七年的空气质量优良天数的数据波动大,所以s1>s2,故选项D正确.故选D.[答案]D\n折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的变化趋势.\n〔变式训练3〕(2021·山西怀仁、朔州期末)空气质量指数大小分为五级.指数越大说明污染的情况越严重,对人体危害越大,指数范围在:[0,50],[51,100],[101,200],[201,300],[301,500]分别对应“优”“良”“轻(中)度污染”“中度(重)污染”“重污染”五个等级,如图是某市连续14天的空气质量指数趋势图,下面说法错误的有()\nA.这14天中有4天空气质量指数为“良”B.这14天中空气质量中位数是103C.从2日到5日空气质量越来越差D.连续三天中空气质量指数方差最小的是9日至11日\n\n名师讲坛·素养提升\n高考与频率分布直方图(1)(2021·全国高考)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:例4\n根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间C\n(2)(2021·全国高考)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5\n\n[解析](1)因为频率分布直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.02+0.04=0.06=6%,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.04+0.02×3=0.10=10%,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.10+0.14+0.20×2=0.64=64%>50%,故D正确;该地农户家庭年收入的平均值的估计值为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选C.\n\n\n〔变式训练4〕(2019·高考全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如右直方图:\n记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).\n[解析](1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-24 16:00:05 页数:62
价格:¥3 大小:1.58 MB
文章作者:随遇而安

推荐特供

MORE