首页

福建专版2022高考数学一轮复习课时规范练49用样本估计总体文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

课时规范练49 用样本估计总体基础巩固组1.一组数据分别为12,16,20,23,20,15,28,23,则这组数据的中位数是(  )                A.19B.20C.21.5D.232.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数x8.38.88.88.7方差s23.53.62.25.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是(  )A.甲B.乙C.丙D.丁3.(2022广西南宁一模)某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在(  )A.第3组B.第4组C.第5组D.第6组〚导学号24190795〛4.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为(  )7\nA.2B.3C.4D.55.在某次测量中得到的甲样本数据如下:42,43,46,52,42,50,若乙样本数据恰好是甲样本每个数据都减5后所得数据,则甲、乙两个样本的下列数字特征对应相同的是(  )A.平均数B.标准差C.众数D.中位数6.若数据x1,x2,…,xn的平均数为x,方差为s2,则2x1+3,2x2+3,…,2xn+3的平均数和方差分别为(  )A.x和s2B.2x+3和4s2C.2x+3和s2D.2x+3和4s2+12s+97.(2022辽宁大连一模,文13)某班级有50名同学,一次数学测试平均成绩是92,如果学号为1号到30号的同学平均成绩为90,那么学号为31号到50号同学的平均成绩为     . 8.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是     .〚导学号24190796〛 9.某市运动会期间30名志愿者年龄数据如下表:年龄/岁人数/人197212283304315323406合 计30(1)求这30名志愿者年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这30名志愿者年龄的茎叶图;(3)求这30名志愿者年龄的方差.7\n综合提升组10.若一组数据2,4,6,8的中位数、方差分别为m,n,且ma+nb=1(a>0,b>0),则1a+1b的最小值为(  )A.6+23B.4+35C.9+45D.2011.已知样本(x1,x2,…,xn)的平均数为x,样本(y1,y2,…,ym)的平均数为y(x≠y),若样本(x1,x2,…,xn,y1,y2,…,ym)的平均数z=αx+(1-α)y,其中0<α<12,则n,m的大小关系为(  )A.n<mB.n>mC.n=mD.不能确定12.(2022山西晋中一模)设样本数据x1,x2,…,x2017的方差是4,若yi=2xi-1(i=1,2,…,2017),则y1,y2,…,y2017的方差为     . 13.(2022河北邯郸二模,文18)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;7\n(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y1∶12∶13∶44∶5〚导学号24190797〛创新应用组14.某学校随机抽取20个班,调查各班有网上购物经历的人数,所得数据的茎叶图如图所示,以5为组距将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是(  )〚导学号24190798〛15.(2022河北邯郸一模,文18)某校为指导学生合理选择文理科的学习,根据数理综合测评成绩,按6分为满分进行折算后,若学生成绩小于m分建议选择文科,不低于m分则建议选择理科(这部分学生称为候选理科生).现从该校高一随机抽取500名学生的数理综合成绩作为样本,整理得到分数的频率分布直方图(如图所示).7\n(1)求直方图中t的值;(2)根据此次测评,为使80%以上的学生选择理科,整数m至多定为多少?(3)若m=4,试估计该校高一学生中候选理科学生的平均成绩.(精确到0.01)答案:1.B 把该组数据按从小到大的顺序排列如下:12,15,16,20,20,23,23,28,排在中间的两个数是20,20,故这组数据的中位数为20+202=20.故选B.2.C 由题目表格中数据可知,丙的平均环数最高,且方差最小,说明丙的技术稳定,且成绩好,故选C.3.B 由题图可得,前第四组的频率为(0.0375+0.0625+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,即中位数落在第4组,故选B.4.B 依题意可得10×(0.005+0.01+0.02+a+0.035)=1,则a=0.03.所以身高在[120,130),[130,140),[140,150]三组内的学生人数比例为3∶2∶1.所以从身高在[140,150]内的学生中选取的人数应为13+2+1×18=3.5.B 设样本甲中的数据为xi(i=1,2,…,6),则样本乙中的数据为yi=xi-5(i=1,2,…,6),则样本乙中的众数、平均数和中位数与甲中的众数、平均数和中位数都相差5,只有标准差没有发生变化,故选B.6.B 原数据乘2加上3得到一组新数据,则由平均数、方差的性质可知得到的新数据的平均数、方差分别是2x+3和4s2.7.95 设学号为31号到50号同学的平均成绩为x,则92×50=90×30+20x,解得x=95,故答案为95.8.54 成绩在[16,18]的学生人数所占比例为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为120×920=54.9.解(1)众数为19,极差为21.(2)茎叶图如图.7\n(3)年龄的平均数为19×7+21×2+28×3+30×4+31×5+32×3+40×630=29,故这30名志愿者年龄的方差为130[(19-29)2×7+2×(21-29)2+3×(28-29)2+4×(30-29)2+(31-29)2×5+(32-29)2×3+(40-29)2×6]=2685.10.D ∵数据2,4,6,8的中位数是5,方差是14(9+1+1+9)=5,∴m=5,n=5.∴ma+nb=5a+5b=1(a>0,b>0).∴1a+1b=1a+1b(5a+5b)=52+ba+ab≥20(当且仅当a=b时等号成立),故选D.11.A 由题意知样本(x1,…,xn,y1,…,ym)的平均数为z=nx+mym+n=nm+nx+mm+ny.又z=αx+(1-α)y,即α=nm+n,1-α=mm+n.因为0<α<12,所以0<nm+n<12,即2n<m+n,所以n<m,故选A.12.16 根据题意,设样本数据x1,x2,…,x2017的平均数为x,又由其方差为4,则sx2=12017[(x1-x)2+(x2-x)2+(x3-x)2+…+(x2017-x)2]=4.对于数据yi=2xi-1(i=1,2,…,2017),其平均数y=12017(y1+y2+…+y2017)=12017[(2x1-1)+(2x2-1)+…+(2x2017-1)]=2x-1,其方差sy2=12017[(y1-y)2+(y2-y)2+(y3-y)2+…+(y2017-y)2]=42017[(x1-x)2+(x2-x)2+(x3-x)2+…+(x2017-x)2]=16,故答案为16.13.解(1)依题意,得10(2a+0.02+0.03+0.04)=1,解得a=0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分).(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:100×0.4×12=20,数学成绩在[70,80)的人数为:100×0.3×43=40,7\n数学成绩在[80,90)的人数为:100×0.2×54=25,所以数学成绩在[50,90)之外的人数为:100-5-20-40-25=10.14.A 由组距可知选项C,D不对;由茎叶图可知[0,5)有1人,[5,10)有1人,故第一、二小组频率相同,频率分布直方图中矩形的高应相等,可排除B.故选A.15.解(1)根据频率分布直方图,得0.15×1+t×1+0.30×1+t×1+0.15×1=1,解得t=0.2.(2)为使80%以上的学生选择理科,则0.15+0.2+0.3<0.8<0.15+0.2+0.3+0.2,故满足条件的m值为2.(3)当m=4时,4.5×0.2×1×500+5.5×0.15×1×5000.2×1×500+0.15×1×500≈4.93,估计该校高一学生中候选理科学生的平均成绩为4.93分.7

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 16:46:09 页数:7
价格:¥3 大小:214.55 KB
文章作者:U-336598

推荐特供

MORE