初中数学知识总结专题19 平行四边形(教师版)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
专题19平行四边形专题知识回顾1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。2.平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。3.平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形。4.平行四边形的面积:S平行四边形=底边长×高=ah专题典型题考法及解析【例题1】(2019▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF【答案】B.【解析】利用三角形中位线定理得到DEAC,结合平行四边形的判定定理进行选择.∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,18,∴DEAC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.【例题2】(2018湖北黄石)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.【答案】看解析。【解析】本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.∵△ABC是等腰直角三角形,∠ACB=90°,∴AB=BC,∵△ABD和△ACE均为等腰直角三角形,∴BD==BC=2BC,∵G为BD的中点,18,∴BG=BD=BC,∴△CBG为等腰直角三角形,∴∠CGB=45°,∵∠ADB=45°,AD∥CG,∵∠ABD=45°,∠ABC=45°∴∠CBD=90°,∵∠ACB=90°,∴∠CBD+∠ACB=180°,∴AC∥BD,∴四边形ACGD为平行四边形;(2)证明:∵∠EAB=∠EAC+∠CAB=90°+45°=135°,∠CAD=∠DAB+∠BAC=90°+45°=135°,∴∠EAB=∠CAD,在△DAC与△BAE中,,∴△DAC≌△BAE,∴BE=CD;∵∠EAC=∠BCA=90°,EA=AC=BC,∴四边形ABCE为平行四边形,∴CE=AB=AD,在△BCE与△CAD中,,∴△BCE≌△CAD,∴∠CBE=∠ACD,∵∠ACD+∠BCD=90°,∴∠CBE+∠BCD=90°,∴∠CFB=90°,即BE⊥CD.18,专题典型训练题一、选择题1.(福建福州)平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B(2,-l),C(-m,-n),则点D的坐标是()A.(-2,l)B.(-2,-l)C.(-1,-2)D.(-1,2)【答案】A【解析】本题考查了平行四边形的性质、关于原点对称的点的坐标特征,解题关键是熟练掌握平行四边形的性质,得出D和B关于原点对称.由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1),故选择A.2.(河北省)关于□ABCD的叙述,正确的是()A.若AB⊥BC,则□ABCD是菱形B.若AC⊥BD,则□ABCD是正方形C.若AC=BD,则□ABCD是矩形D.若AB=AD,则□ABCD是正方形【答案】C【解析】根据菱形、矩形和正方形的判定方法对各选项进行判断.当AB⊥BC时,∠ABC=90°,∴□ABCD是矩形(有一个角是直角的平行四边形是矩形),故选项A不正确;∵AC⊥BD,∴□ABCD是菱形(对角线互相垂直的平行四边形是菱形),故选项B不正确;∵AC=BD,∴□ABCD是矩形(对角线相等的平行四边形是矩形),故选项C正确;∵AB=AD,∴□ABCD是菱形(有一组邻边相等的平行四边形是菱形),故选项D不正确.3.(湖南湘西)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形【答案】D【解析】此题主要考查了平行四边形的判定,根据平行四边形的判断定理可作出判断.选项A、B、C都是平行四边形的判定定理,符合选项D条件的除了平行四边形还有等腰梯形,故选择D.18,4.(2019•山东临沂)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND【答案】A【解析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.5.(山东淄博)如图,△ABC的面积为16,点D是BC边上一点,且BD=BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形.则图中阴影的面积是()A.3B.4C.5D.6【答案】B【解析】本题考查三角形的面积的计算,平行四边形的性质,及整体思想,解题关键是能整体求解.这里两阴影部分以公共边GH为底,则高的和=△ABC的BC边的高.18,设△ABC底边BC上的高为h,△AGH底边GH上的高为h1,△CGH底边GH上的高为h2,则有h=h1+h2.S△ABC=BC•h=16,S阴影=S△AGH+S△CGH=GH•h1+GH•h2=GH•(h1+h2)=GH•h.∵四边形BDHG是平行四边形,且BD=BC,∴GH=BD=BC.∴S阴影=×(BC•h)=S△ABC=4.故选择B二、填空题6.(2019广西百色)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'= .【答案】30°【解析】根据矩形和平行四边形的面积公式可知,平行四边形A'B'C'D'的底边AD边上的高等于AD的一半,据此可得∠A'为30°.∵,∴平行四边形A'B'C'D'的底边AD边上的高等于AD的一半,∴∠A'=30°.6.(2019湖南娄底)如图,平行四边形ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是 .【答案】9.【解析】∵E为AD中点,四边形ABCD是平行四边形,∴DE=AD=BC,DO=BD,AO=CO,18,∴OE=CD,∵△BCD的周长为18,∴BD+DC+B=18,∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=97.(2019河南省)如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是_________.【答案】110°【解析】本题考查了平行四边形的性质和和三角形外角的性质求角的大小,解题的关键是熟练运用平行四边形性质或三角形外角的有关知识.思路:首先利用平行四边形的性质求出∠BAE的度数,再由∠2是△ABE的外角求出∠2的大小.∵四边形ABCD是平行四边形∴AB∥CD,∴∠BAE=∠1=20°∵BE⊥AB∴∠ABE=90°∵∠2是△ABE的外角∴∠2=∠ABE+∠BAE=90°+20°=110,故答案为110°.8.(2019湖北省十堰市)如图,在平行四边形ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长__________cm.【答案】4【解析】本题属于平面几何的计算题,主要涉及到平行四边形的性质、勾股定理、三角形的周长等;解题的关键是△DBC比△ABC的周长长等于BD-AC;18,解题的思路是根据平行四边形的性质和勾股定理,分别表示出△DBC的周长与△ABC的周长,找出BD-AC的值即可.如图,设AC与BD交于点F,因为AB=2cm,AD=4cm,AC⊥BC,所以AC=;因为平行四边形ABCD中,所以,AF=FC,BF=DF;BF=,BD=10;因为△DBC的周长=BD+BC+CD=10+AB,△ABC的周长=AB+BC+6,所以△DBC比△ABC的周长长4.F9.(2019浙江金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.【答案】80°【解析】延长DE交AB于F,根据平行四边形的性质及三角形内外角的关系可以确定∠AED的度数.延长DE交AB于F,因为AB∥CD,BC∥DE,所以四边形BCDF为平行四边形,因为∠C=120°,所以∠BFD=120°,所以∠AFD=60°,又∠A=20°,所以∠AED=60°+20°=80°,故答案为80°.10.(江苏省无锡市)如图,已知□OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为_______.18,【答案】5.【解析】本题考查了平行四边形的性质,解题的关键是知道点B到直线x=4的距离等于点O到直线x=1的距离.本题的思路是由平行四边形的中心对称的性质可知点O与点A,点C与点B之间的水平距离相等,可求得点B的横坐标,也就是说点B在一条垂直于x轴的直线上运动,我们只需寻找出点B在什么位置时,OB最短即可.∵顶点A、C分别在直线x=1和x=4上,O是坐标原点,∴点B在x=5上,当点B在x轴上时,即OB的最小值为5,故答案为5.11.(2019•湖北武汉)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为 .【答案】21°.【解析】设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,18,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°。三、解答题12.(2019徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【答案】见解析。【解析】依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).18,13.(2019湖南郴州)如图,平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.【答案】见解析.【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE(ASA),∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形.14.(湖南省永州市)如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD.(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.18,【答案】见解析。【解析】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠AEB.又AE平分∠BAD,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴BE=AB.又AB=CD,∴BE=CD.(2)∵BE=AB,BF⊥AE,∴AF=EF,∵AD∥BE,∴∠D=∠DCE,∠DAF=∠FEC,∴△ADF≌△ECF(AAS).∴S平行四边形ABCD=S△ABE.∵BE=AB,∠BEA=60°,∴△ABE为等边三角形.∴S△ABE=AE·BF=×4×4sin60°=×4×4×=.∴S平行四边形ABCD=.15.(2019安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【答案】见解析。【解析】根据ASA证明:△BCE≌△ADF;根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,18,∴∠EAB+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.16.(2019湖南张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.【答案】(1)见解析;(2)2.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CD,AD=BC,∴△EBF∽△EAD,18,∴==,∴BF=AD=BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,∴AD∥CD,∴△FGC∽△DGA,∴=,即=,解得,FG=2.17.(2019•南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.【答案】见解析。【解析】依据四边形DBCE是平行四边形,即可得出BD=CE,依据CE∥AD,即可得出∠A=∠ECF,∠ADF=∠E,即可判定△ADF≌△CEF.证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A=∠ECF,∠ADF=∠E,∴△ADF≌△CEF(ASA).18,18.(2018海南)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.【答案】看解析。【解析】考点是平行四边形的判定与性质.菁优网版权所有利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,进而得出答案;首先过点D作DN⊥BC于点N,再利用平行四边形的性质结合勾股定理得出DF的长,进而得出答案.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴DE=FC,DE∥FC,∴四边形CEDF是平行四边形;(2)解:过点D作DN⊥BC于点N,∵四边形ABCD是平行四边形,∠A=60°,∴∠BCD=∠A=60°,∵AB=3,AD=4,∴FC=2,NC=DC=,DN=,∴FN=,则DF=EC==.18,19.(2019辽宁本溪)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.【答案】见解析。【解析】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=620.(江苏省扬州市)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.18,【答案】见解析。【解析】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,∠FAN=∠EMC,AN=CM,∠ANF=∠EMC,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积为:EC•AB=5×6=30.21.(2019四川省凉山州)如图,的对角线、交于点,过点且与、分别交于点、。试猜想线段、的关系,并说明理由。ABCEDFO【答案】见解析。【解析】根据平行四边形的性质得到OA与OC相等,AD∥BC,进而有∠AFE与∠CEF相等,再结合对顶角得出△AOF与△COE全等,得到OE与OF相等,再证明△AOE与△COF全等,从而得到AE与CF的关系.AE=CF.∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,∴∠AFE=∠CEF;18,在△AOF和△COE中,∴△AOF≌△COE(AAS),∴OF=OE;在△AOE和△COF中,∴△AOE≌△COF(SAS),∴AE=CF.18
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)