首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
数学一轮复习专题11.2 排列与组合 (新教材新高考)(练)教师版
数学一轮复习专题11.2 排列与组合 (新教材新高考)(练)教师版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/13
2
/13
剩余11页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题11.2排列与组合练基础1.(2021·福建宁德·高三期中)三名学生报名参加校园文化活动,活动共有三个项目,每人限报其中一项,则恰有两名学生报同一项目的报名方法种数有()A.6种B.9种C.18种D.36种【答案】C【分析】根据题意首先从三名学生中选名选报同一项目,再从三个项目中选项项目,全排即可.【详解】由题意可得,故选:C2.(2021·山东潍坊·高三月考)甲、乙、丙、丁、戊共名同学进行劳动技术比赛,决出第名到第名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”,对乙说:“你不会是最差的”,从这两个回答分析,这人的名次排列所有可能的情况共有()A.种B.种C.种D.种【答案】C【分析】甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理即可得到结果.【详解】由题意得:甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下3人有种排法.故共有种不同的情况.故选:C.3.(2021·全国·高三月考(理))某地计划在10月18日至11月18日举办“菊花花会”,如图是某展区的一个菊花布局图,现有5个不同品种的菊花可供选择摆放,要求相邻的两个展区不使用同一种菊花,则不同的布置方法有() A.240种B.300种C.360种D.420种【答案】D【分析】先放A,分B、D选则同一种花和不同种花两种情况,再考虑C、E,由分步乘法和分类加法原理可得答案.【详解】先放A,共有5种选择,若B、D选则同一种花,有四种选择,剩下的C、E均有三种选择,共种,若B、D选则不同种花,有种选择,剩下的C、E均有两种选择,共种,故共有180+240=420种.故选:D.4.(2021·全国·高二课时练习)某工程队有卡车、挖掘机、吊车、混凝土搅拌车各一辆,将它们全部派往3个工地进行作业,每个工地至少派一辆,则不同的派法种数是()A.18B.9C.27D.36【答案】D【分析】利用捆绑法,先把4辆车分成3组,再把分好的3组分别派给3个工地,即可得到答案;【详解】先把4辆车分成3组,再把分好的3组分别派给3个工地,则不同的派法共有(种).故选:D5.(2021·浙江·模拟预测)若从 这个9个整数中取出4个不同的数排成一排,依次记为,则使得为偶数的不同排列方法有()A.1224B.1200C.1080D.840【答案】A【分析】考虑为偶数和为奇数两种情况,判断的奇偶性,根据中偶数的个数计算得到答案.【详解】为偶数,则为偶数,有;为奇数,则为奇数,四个数均为奇数,有.故共有1224种.故选:A.6.(2021·福建省漳州第一中学高二月考)将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为()A.22B.25C.20D.48【答案】C【分析】将7个相同的球放入4个不同的盒子中,即把7个相同的球分成4组,不妨将7个球摆成一排,中间形成6个空,只需在这6个空插入3个隔板将它们隔开,即分成4组,据此即可的解.【详解】解:将7个相同的球放入4个不同的盒子中,即把7个相同的球分成4组,因为每个盒子都有球,所以每个盒子至少又一个球,不妨将7个球摆成一排,中间形成6个空,只需在这6个空插入3个隔板将它们隔开,即分成4组,不同插入方法共有种,所以每个盒子都有球的放法种数为20.故选:C.7.【多选题】(2021·福建省漳州第一中学高二月考)男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.1人B.2人C.3人D.4人【答案】BC【分析】设女生有n人,则男生有8-n人,由求解. 【详解】设女生有n人,则男生有8-n人,由题意得:,即,解得或,故选:BC8.(2021·上海·闵行中学高三期中)从4男2女六名航天员中选出三名作为神舟十四号乘组,则恰好有一名女航天员被选中的选法有______种.(用数字作答)【答案】【分析】利用组合数来计算出选法数.【详解】依题意可知,选法有种.故答案为:9.(2020·新疆·克拉玛依市教育研究所三模(理))新型冠状肺炎疫情发生后,新疆某医院有2名医生,4名护士自愿报名参加援助武汉医疗队,现要将这6名医护人员分成2个小组,分别安排到武汉市的两所方舱医院参加医疗救助活动,每个小组由1名医生和2名护士组成,不同的安排方案共有_________种.(用数字作答)【答案】12【分析】先从2名医生中选1名去一所方舱医院,再从4名护士选2名护士去同一所方舱医院,利用分步乘法计数原理即可求出.【详解】先从2名医生中选1名去一所方舱医院,有种,再从4名护士选2名护士去同一所方舱医院,有种,剩下的1名医生2名护士去另一所方舱医院,则不同的安排方案共有种.故答案为:12.10.(2021·全国·高二课时练习)求下列各式中的正整数n:(1);(2).【答案】(1)(2)6 【分析】(1)根据排列数公式列出方程即可求解;(2)根据排列数公式列出方程即可求解;(1)解:因为,所以,解得;(2)解:因为,又,所以,解得.练提升TIDHNEG1.(2020·上海市沪新中学高三月考)某校组队参加辩论赛,从名学生中选出人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为________(结果用数值表示)【答案】180【分析】利用组合和排列的含义分别求出从6名学生中选出四名且甲必须参赛和甲不担任四辩的情况种数,然后按照分步乘法原理计算即可.【详解】首先从6名学生中选出四名且甲必须参赛共有种情况,甲不担任四辩的情况共有种,故不同的安排方法种数为.故答案为:180.2.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)为宣传地方特色,某电视台派出3名男记者和2名女记者到民间进行采访.期间工作的任务有A,B,C,D四项,每项任务至少一人参加,但两名女记者不参加A任务,则不同的安排方案数共有_______.【答案】【分析】采用分类计数原理,排列组合进行计算可得.【详解】两名女记者不参加A任务,由题意分两类情况:①1男参加A任务;②2男参加A任务,其余人员再排列;即:①1男参加A任务,将3男选1排在A任务,再将剩下4人选两人打捆,再排在其它3项任务,即种.②2男参加A任务,将3男选2人排在A任务,再将剩下的人排在其它3项任务, 即种,所以选出符合条件参加活动的人员共有:108+18=126种,故答案为:126种3.(2021·全国·高三月考)某学校安排甲,乙等位中层干部深入个班级进行班级课堂教学调研,每班至少安排一位中层干部,若甲、乙不能安排到同一个班级,则不同的安排方法共有______________________种(用数字作答).【答案】【分析】先将位中层干部分成组,有组人其他组各人,除去甲、乙分在一起的情况,所以分组结果有种,再分配到个班级,由分步乘法计数原理即可求解.【详解】首先把位中层干部分成组,有组人其他组各人.又甲、乙不能分在一起,因此有种,再对分好的组分配到个班级有种,根据分步乘法原理得:种,故答案为:.4.利用组合数公式证明.【答案】证明见解析【分析】利用组合数公式分别计算等式左右两边即可证明.【详解】证明:因为,,所以.5.(2021·全国·高二课时练习)把分别标有1,2,3,4号的4个不同的小球放入3个分别标有1号、2号、3号的盒子中,不许有空盒子且任意一个小球都不能放入标有相同标号的盒子中,则不同的放法共有多少种?【答案】12【分析】由于4号球没有限制,所以以4号球分两类讨论:一类是4号球与1,2,3号球中的一个在一个盒子,另一类是4号球单独放在一个盒子,其他3个球放入两个盒子.【详解】 由于4号球没有限制,所以以4号球分类:当4号球与1,2,3号球中的一个在一个盒子时,它们有2个盒子可选,其他两个球只有1种放法,共有种放法;当4号球单独放在一个盒子,其他3个球放入两个盒子时,首先在1,2,3号球中先选出两个球占一个盒子有种,再分配剩下那个球与4号球,满足条件的放法种数为种,所以共有种不同放法.6.(2021·福建省漳州第一中学高二月考)为配合国家精准扶贫战略,某省示范性高中安排6名高级教师(不同姓)到基础教育薄弱的甲、乙、丙三所中学进行扶贫支教,每所学校至少1人,因工作需要,其中李老师不去甲校,则分配方案种数为多少种?(请写出分类过程)【答案】360【分析】根据题意,按甲校安排的人数分4种情况讨论,求出每种情况下安排方案的数目,由加法原理计算可得答案.【详解】分四种情况讨论:甲校安排1名老师,分配方案种数有,甲校安排2名老师,分配方案种数有,甲校安排3名老师,分配方案种数有,甲校安排4名老师,分配方案种数有所以分配方案共有150+140+60+10=360种.7.(2021·全国·高二课时练习)现有编号分别为,,,,,,的7个不同的小球,将这些小球排成一排(1)若要求,,相邻,则有多少种不同的排法?(2)若要求排在正中间,且,,各不相邻,则有多少种不同的排法?【答案】(1)720;(2)216.【分析】(1)利用“捆绑法”可求;(2)分,,中有1个在的左侧和有2个在的左侧讨论求解.【详解】(1)把,,看成一个整体与剩余的4个球全排列,则不同的排法有(种).(2)在正中间,所以的排法只有1种. 因为,,互不相邻,所以,,不可能同时在的左侧或右侧.若,,中有1个在的左侧,2个在的右侧且不相邻,则不同的排法有(种),若,,中有2个在的左侧且不相邻,1个在的右侧,则不同的排法有(种).故所求的不同排法有(种).8.(2021·河北·藁城新冀明中学高二月考)从1到6的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)【答案】(1)216(2)108(3)108【分析】(1)分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,将取出的四个数全排列,最后利用分步计数原理求解;(2)分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,将两个偶数看作一个整体与两个奇数排列,最后利用分步计数原理求解;(3分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,先将两个奇数排列,再从三个空中选两个空,将两个偶数排列上,最后利用分步计数原理求解.(1)解:分三步完成:第一步,取两个偶数,有种方法,第二步,取两个奇数,有种方法,第三步,将取出的四个数全排列,有种方法,由分步计数原理得:共能组成个不同的四位数;(2)解:分三步完成:第一步,取两个偶数,有种方法, 第二步,取两个奇数,有种方法,第三步,将两个偶数看作一个整体与两个奇数排列,有种方法,由分步计数原理得:共能组成个不同的四位数;(3)解:分三步完成:第一步,取两个偶数,有种方法,第二步,取两个奇数,有种方法,第三步,先将两个奇数排列,再从三个空中选两个空,将两个偶数排列上,有种方法,由分步计数原理得:共能组成个不同的四位数;9.(2021·全国·高二课时练习)甲、乙、丙、丁、戌五名同学参加某项竞赛,决出了第一名到第五名的5个名次.甲、乙两人去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从组织者的回答分析,这五名同学的名次排列共有多少种不同的情况.【答案】54【分析】安排方案可分3步完成,第一步先安排乙,再安排甲,最后安排其他同学完成,由分步乘法原理求满足条件的方案数.【详解】满足要求的方案可分3步完成,第一步先安排乙,乙可以排在第2,3,4位,有3种安排方法,第二步安排甲,有3种安排方法,第三步再安排其他同学,有种安排方法,由分步乘法原理满足条件的安排方法有54种.39.(2021·全国·高二课时练习)在3000—7000之间有多少个没有重复数字的5的倍数?【答案】392【分析】分各位数字是0和5两种情况进行讨论即可.【详解】第一类,个位是5时,首位从3,4,6中选,中间两位从0到9的数中,去掉5与首位的数中选2个排列,所以共有个;第二类,个位是0时,首位从3,4,5,6中选,中间两位从0到9的数中,去掉0与首位的数中选2个排列,所以共有个;所以共有个. 10.(2021·江西·横峰中学高二期中(理))1.如图,已知图形ABCDEF,内部连有线段.(用数字作答)(1)由点A沿着图中的线段到达点E的最近路线有多少条?(2)由点A沿着图中的线段到达点C的最近路线有多少条?(3)求出图中总计有多少个矩形?【答案】(1)(2)(3)【分析】(1)由题意转化条件为点A需向右移动3次、向上移动3次,结合组合的知识即可得解;(2)设出直线上其它格点为、、,按照、、、分类,结合分步乘法、组合的知识即可得解;(3)由题意转化条件为从竖线中选出两条、横线中选出两条组成图形,按照矩形的边在不在上分类,利用分步乘法、组合的知识即可得解.(1)由题意点A沿着图中的线段到达点E的最近路线需要移动6次:向右移动3次,向上移动3次,故点A到达点E的最近路线的条数为;(2)设点、、的位置如图所示:则点A沿着图中的线段到达点C的最近路线可分为4种情况: ①沿着,共有条最近路线;②沿着,共有条最近路线;③沿着,共有条最近路线;④沿着,共有条最近路线;故由点A沿着图中的线段到达点C的最近路线有条;(3)由题意,要组成矩形则应从竖线中选出两条、横线中选出两条,可分为两种情况:①矩形的边不在上,共有个矩形;②矩形的一条边在上,共有个矩形;故图中共有个矩形.练真题TIDHNEG1.(2020·海南省高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【解析】首先从名同学中选名去甲场馆,方法数有;然后从其余名同学中选名去乙场馆,方法数有;最后剩下的名同学去丙场馆.故不同的安排方法共有种.故选:C2.(2021·全国·高考真题(理))将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】 根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.3.(2018·浙江高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260.【解析】若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.4.(2017·天津高考真题(理))用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】1080【解析】5.(2015·上海高考真题(理))在报名的名男教师和名女教师中,选取人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】【解析】①男女,种;②男女,种;③男女,种;∴一共有种.故答案为:120.6.(2020·全国高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:现在可看成是3组同学分配到3个小区,分法有: 根据分步乘法原理,可得不同的安排方法种故答案为:.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
数学一轮复习专题1.1 集合(新教材新高考)(练)教师版
数学一轮复习专题3.5 指数与指数函数 (新教材新高考)(练)教师版
数学一轮复习专题3.6 对数与对数函数 (新教材新高考)(练)教师版
数学一轮复习专题3.8 函数与方程 (新教材新高考)(练)教师版
数学一轮复习专题9.1 直线与直线方程 (新教材新高考)(练)教师版
数学一轮复习专题9.3 椭圆 (新教材新高考)(练)教师版
数学一轮复习专题9.4 双曲线 (新教材新高考)(练)教师版
数学一轮复习专题9.6 直线与圆锥曲线 (新教材新高考)(练)教师版
数学一轮复习专题10.1 统计与统计案例 (新教材新高考)(练)教师版
数学一轮复习专题10.2 复数 (新教材新高考)(练)教师版
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-10-24 14:20:01
页数:13
价格:¥5
大小:356.62 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划