首页

数学一轮复习专题9.4 双曲线 (新教材新高考)(练)教师版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

专题9.4双曲线练基础1.(2021·江苏高考真题)已知双曲线的一条渐近线与直线平行,则该双曲线的离心率是()A.B.C.2D.【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为,易知与直线平行,所以.故选:D.2.(2021·北京高考真题)若双曲线离心率为,过点,则该双曲线的程为()A.B.C.D.【答案】B【分析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B3.(2021·山东高考真题)已知是双曲线(,)的左焦点,点在双曲线上,直线与轴垂直,且,那么双曲线的离心率是() A.B.C.2D.3【答案】A【分析】易得的坐标为,设点坐标为,求得,由可得,然后由a,b,c的关系求得,最后求得离心率即可.【详解】的坐标为,设点坐标为,易得,解得,因为直线与轴垂直,且,所以可得,则,即,所以,离心率为.故选:A.4.(2021·天津高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为()A.B.C.2D.3【答案】A【分析】设公共焦点为,进而可得准线为,代入双曲线及渐近线方程,结合线段长度比值可得,再由双曲线离心率公式即可得解.【详解】设双曲线与抛物线的公共焦点为,则抛物线的准线为,令,则,解得,所以,又因为双曲线的渐近线方程为,所以,所以,即,所以, 所以双曲线的离心率.故选:A.5.(2019·北京高考真题(文))已知双曲线(a>0)的离心率是则a=()A.B.4C.2D.【答案】D【解析】∵双曲线的离心率,,∴,解得,故选D.6.(全国高考真题(文))双曲线的离心率为2,焦点到渐近线的距离为,则的焦距等于().A.2B.C.4D.【答案】C【解析】设双曲线的焦距为2c,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C.7.(2017·天津高考真题(文))已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为()A.B.C.D.【答案】D【解析】 由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:.本题选择D选项.8.(2021·全国高考真题(理))已知双曲线的一条渐近线为,则C的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出的关系,再结合双曲线中对应关系,联立求解,再由关系式求得,即可求解.【详解】由渐近线方程化简得,即,同时平方得,又双曲线中,故,解得(舍去),,故焦距.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是_____.【答案】.【解析】由已知得,解得或,因为,所以.因为,所以双曲线的渐近线方程为.10.(2020·全国高考真题(文))设双曲线C:(a>0,b>0)的一条渐近线为y= x,则C的离心率为_________.【答案】【解析】由双曲线方程可得其焦点在轴上,因为其一条渐近线为,所以,.故答案为:练提升TIDHNEG1.(2018·全国高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为()A.B.C.D.【答案】B【解析】由题可知在中,在中,故选B.2.(2020·云南文山·高三其他(理))已知双曲线上关于原点对称的两个点P,Q,右顶点为A,线段的中点为E,直线交x轴于 ,则双曲线的离心率为()A.B.C.D.【答案】D【解析】由已知得M为的重心,∴,又,∴,即.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于轴的直线与双曲线:的两条渐近线分别交于、两点,为坐标原点,若为等边三角形,则双曲线的离心率为()A.B.C.D.【答案】A【解析】因为为等边三角形,所以渐近线的倾斜角为,所以所以.故选:A4.(2021·广东广州市·高三月考)已知,分别是双曲线:的左、右焦点,点是其一条渐近线上一点,且以线段为直径的圆经过点,则点的横坐标为()A.B.C.D.【答案】C【分析】由题意可设,根据圆的性质有,利用向量垂直的坐标表示,列方程求即可.【详解】 由题设,渐近线为,可令,而,,∴,,又,∴.故选:C5.(2020·广西南宁三中其他(理))圆上有且仅有两点到双曲线的一条渐近线的距离为,则该双曲线离心率的取值范围是()A.B.C.D.【答案】C【解析】双曲线的一条渐近线为,圆,圆心,半径因为圆上有且仅有两点到的距离为1,所以圆心到的距离的范围为即,而所以,即故选C项. 6.【多选题】(2021·湖南高三)已知双曲线(,)的左,右焦点为,,右顶点为,则下列结论中,正确的有()A.若,则的离心率为B.若以为圆心,为半径作圆,则圆与的渐近线相切C.若为上不与顶点重合的一点,则的内切圆圆心的横坐标D.若为直线()上纵坐标不为0的一点,则当的纵坐标为时,外接圆的面积最小【答案】ABD【分析】由,得到,利用离心率的定义,可判定A正确;由双曲线的几何性质和点到直线的距离公式,可判定B正确;由双曲线的定义和内心的性质,可判定C不正确;由正弦定理得到外接圆的半径为,得出最大时,最小,只需最大,设,得到,结合基本不等式,可判定D正确.【详解】对于A中,因为,所以,故的离心率,所以A正确;对于B中,因为到渐近线的距离为,所以B正确;对于C中,设内切圆与的边分别切于点,设切点,当点在双曲线的右支上时,可得,解得,当点在双曲线的左支上时,可得,所以的内切圆圆心的横坐标,所以C不正确;对于D中,由正弦定理,可知外接圆的半径为,所以当最大时,最小,因为,所以为锐角,故最大,只需最大. 由对称性,不妨设(),设直线与轴的交点为,在直角中,可得,在直角中,可得,又由,当且仅当,即时,取最大值,由双曲线的对称性可知,当时,也取得最大值,所以D正确.故选:ABD.7.【多选题】(2021·重庆巴蜀中学高三月考)已知点是圆:上一动点,点,若线段的垂直平分线交直线于点,则下列结论正确的是()A.点的轨迹是椭圆B.点的轨迹是双曲线C.当点满足时,的面积D.当点满足时,的面积【答案】BCD【分析】根据的结果先判断出点的轨迹是双曲线,由此判断AB选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出的值,即可求解出,据此可判断CD选项.【详解】依题意,,,因线段的垂直平分线交直线于点,于是得, 当点在线段的延长线上时,,当点在线段的延长线上时,,从而得,由双曲线的定义知,点的轨迹是双曲线,故A错,B对;选项C,点的轨迹方程为,当时,,所以,故C对;选项D,当时,,所以,故D对,故选:BCD.8.(2021·全国高二课时练习)双曲线的焦距为4,且其渐近线与圆相切,则双曲线的标准方程为______.【答案】【分析】根据焦距,可求得c值,根据渐近线与圆相切,可得圆心到直线的距离等于半径1,根据a,b,c的关系,即可求得a,b值,即可得答案.【详解】因为双曲线的焦距为4,所以.由双曲线的两条渐近线与圆相切,可得.又,所以,,所以双曲线的标准方程为.故答案为:9.(2021·全国高二单元测试)已知双曲线的左、右焦点分别为, ,离心率为,若双曲线上一点使,则的值为______.【答案】3【分析】在中,设,则或.分别运用余弦定理可求得答案.【详解】解:由已知得.在中,设,则或.当时,由余弦定理,得,解得,所以.当时,由余弦定理,得,无解.故.故答案为:3.10.(2021·全国高二课时练习)如图,以为直径的圆有一内接梯形,且.若双曲线以,为焦点,且过,两点,则当梯形的周长最大时,双曲线的离心率为______.【答案】【分析】连接,设,将梯形的周长表示成关于的函数,求出当时,有最大值,即可得到答案;【详解】连接,设,,作于点,则,,所以,梯形的周长. 当,即时,有最大值,这时,,,,.故答案为:练真题TIDHNEG1.(2021·全国高考真题(理))已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A.B.C.D.【答案】A【分析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A2.(2020·浙江省高考真题)已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y=图像上的点,则|OP|=()A.B.C.D.【答案】D【解析】因为,所以点在以为焦点,实轴长为,焦距为的双曲线的右支上,由可得,,即双曲线的右支方程为,而点还在函数的图象上,所以, 由,解得,即.故选:D.3.(2019·全国高考真题(理))设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.【答案】A【解析】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.4.(2019·全国高考真题(理))双曲线C:=1的右焦点为F,点P在C 的一条渐近线上,O为坐标原点,若,则△PFO的面积为()A.B.C.D.【答案】A【解析】由.,又P在C的一条渐近线上,不妨设为在上,,故选A.5.(2021·全国高考真题(文))双曲线的右焦点到直线的距离为________.【答案】【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,,所以双曲线的右焦点为,所以右焦点到直线的距离为.故答案为:6.(2019·全国高考真题(理))已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.【答案】2.【解析】如图, 由得又得OA是三角形的中位线,即由,得则有,又OA与OB都是渐近线,得又,得.又渐近线OB的斜率为,所以该双曲线的离心率为.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-10-24 13:10:02 页数:15
价格:¥5 大小:854.20 KB
文章作者:180****8757

推荐特供

MORE