首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
数学一轮复习专题9.5 抛物线 (新教材新高考)(练)教师版
数学一轮复习专题9.5 抛物线 (新教材新高考)(练)教师版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/18
2
/18
剩余16页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题9.5抛物线练基础1.(2020·全国高考真题(理))已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9【答案】C【解析】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.2.(2020·北京高三二模)焦点在x轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是()A.x2=4yB.y2=4xC.x2=8yD.y2=8x【答案】D【解析】根据题意,要求抛物线的焦点在x轴的正半轴上,设其标准方程为,又由焦点到准线的距离为4,即p=4,故要求抛物线的标准方程为y2=8x,故选:D.3.(全国高考真题)设为抛物线的焦点,曲线与交于点,轴,则()A.B.C.D.【答案】D【解析】由抛物线的性质可得,故选D.4.(2020·全国高考真题(文))设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A.B.C.D. 【答案】B【解析】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.5.(2019·四川高三月考(文))若抛物线的准线为圆的一条切线,则抛物线的方程为()A.B.C.D.【答案】C【解析】∵抛物线的准线方程为,垂直于x轴.而圆垂直于x轴的一条切线为,则,即.故抛物线的方程为.故选:C.6.(2019·北京高考真题(文))设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.【答案】(x-1)2+y2=4.【解析】抛物线y2=4x中,2p=4,p=2,焦点F(1,0),准线l的方程为x=-1,以F为圆心,且与l相切的圆的方程为(x-1)2+y2=22,即为(x-1)2+y2=4.7.(2019·山东高三月考(文))直线与抛物线相交于,两点,当时,则弦中点到轴距离的最小值为______.【答案】【解析】 由题意,抛物线的焦点坐标为(0,),根据抛物线的定义如图,所求d=故答案为:.8.(2021·沙湾县第一中学(文))设过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且直线AB的倾斜角为,则线段AB的长是____,焦点F到A,B两点的距离之积为_________.【答案】88【分析】由题意可得直线AB的方程为,然后将直线方程与抛物线方程联立方程组,消去后,利用根与系数的关系,结合抛物线的定义可求得答案【详解】解:由题意得,则直线AB的方程为,设,由,得,所以,所以, 因为,所以,故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点到焦点的距离为,则的值为__________;抛物线方程为__________.【答案】答案见解析答案见解析【分析】由于抛物线的开口方向未定,根据点在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得的值,根据点在抛物线上可得的值.【详解】根据点在抛物线上,可知抛物线开口向下,向左、向右均有可能,当抛物线开口向下时,设抛物线方程为(),此时准线方程为,由抛物线定义知,解得.所以抛物线方程为,这时将代入方程得.当抛物线开口向左或向右时,可设抛物线方程为(),从知准线方程为,由题意知,解此方程组得,,,,综合(1)、(2)得,;,;,;,;,.故答案为:,,,,;,,,, .10.(2019·广东高三月考(理))已知为抛物线的焦点,直线与相交于两点.若,求的值;点,若,求直线的方程.【答案】(1)(2)【解析】(1)由题意,可得,设,联立方程组,整理得,则,,又由.(2)由题意,知,,,由,可得又,,则,整理得,解得,所以直线的方程为.练提升TIDHNEG1.(2021·吉林长春市·高三(理))已知是抛物线上的一点,是抛物线的焦点,若以为始边,为终边的角,则等于()A.B.C.D.【答案】D【分析】 设点,取,可得,求出的值,利用抛物线的定义可求得的值.【详解】设点,其中,则,,取,则,可得,因为,可得,解得,则,因此,.故选:D.2.(2017·全国高考真题(文))过抛物线的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,则点到直线的距离为()A.B.C.D.【答案】A【解析】设直线与轴相交于点,与直线相交于点,,设,因为,所以,所以,解得:,设,由焦半径公式得:,所以,, 所以,所以点到直线的距离为.3.(2020·广西南宁三中其他(理))已知抛物线的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为()A.B.C.D.【答案】B【解析】过点作于,因为,由抛物线的定义得,所以在中,,所以,所以直线的斜率为,所以直线的方程为,即,故选B.4.(2020·浙江高三月考)如图,已知抛物线和圆,直线经过的焦点,自上而下依次交和于A,B,C,D四点,则的值为() A.B.C.1D.2【答案】C【解析】因为抛物线的焦点为,又直线经过的焦点,设直线,由得,设,则由题意可得:,同理,所以.故选C5.【多选题】(2022·全国高三专题练习)已知抛物线与双曲线有相同的焦点,点在抛物线上,则下列结论正确的有()A.双曲线的离心率为2B.双曲线的渐近线为C.D.点P到抛物线的焦点的距离为4【答案】ACD【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A、B、C的正误,根据所得抛物线方程求,即知D的正误.【详解】 双曲线的离心率为,故A正确;双曲线的渐近线为,故B错误;由有相同焦点,即,即,故C正确;抛物线焦点为,点在上,则,故或,所以P到的焦点的距离为4,故D正确.故选:ACD.6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为()A.当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是B.已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程为C.抛物线y=ax2(a≠0)的准线方程D.已知双曲线,其离心率,则m的取值范围(-12,0)【答案】ACD【分析】求出直线定点设出抛物方程即可判断A;根据渐近线方程与焦点坐标求出即可判断B;根据抛物线方程的准线方程公式即可判断C;利用双曲线离心率公式即可判断D.【详解】对A选项,直线(a-1)x-y+2a+1=0恒过定点为,则过点且焦点在y轴上的抛物线的标准方程设为,将点代入可得,所以,故A正确;对B选项,知,又,解得,所以双曲线的标准方程为,故B错;对C选项,得,所以准线方程,正确;对D选项,化双曲线方程为,所以,解得,故正确. 故选:ACD7.(2021·全国高二课时练习)已知点为抛物线上一点,若点到两定点,的距离之和最小,则点的坐标为______.【答案】【分析】过点作抛物线准线的垂线,垂足为,根据抛物线的定义可得,易知当,,三点共线时取得最小值且为,进而可得结果.【详解】过点作抛物线准线的垂线,垂足为,由抛物线的定义,知点到焦点的距离与点到准线的距离相等,即,所以,易知当,,三点共线时,取得最小值,所以,此时点的坐标为.故答案为:8.(2021·全国高二课时练习)抛物线的焦点为,已知点,为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为______.【答案】【分析】设,,根据中位线定理以及抛物线定义可得,在中,由余弦定理以及基本不等式可得,即可求得的最大值.【详解】设,,作垂直抛物线的准线于点,垂直抛物线的准线于点. 由抛物线的定义,知,.由余弦定理得.又,∴,当且仅当时,等号成立,∴,∴,即的最大值为.故答案为:.9.(2020·山东济南外国语学校高三月考)抛物线:的焦点坐标是________;经过点的直线与抛物线相交于,两点,且点恰为的中点,为抛物线的焦点,则________.【答案】9【解析】抛物线:的焦点.过作准线交准线于,过作准线交准线于,过作准线交准线于, 则由抛物线的定义可得.再根据为线段的中点,,∴,故答案为:焦点坐标是,.10.(2019·四川高考模拟(文))抛物线:的焦点为,抛物线过点.(Ⅰ)求抛物线的标准方程与其准线的方程;(Ⅱ)过点作直线与抛物线交于,两点,过,分别作抛物线的切线,证明两条切线的交点在抛物线的准线上.【答案】(Ⅰ)抛物线的标准方程为,准线的方程为;(Ⅱ)详见解析.【解析】(Ⅰ)由,得,所以抛物线的标准方程为,准线的方程为.(Ⅱ)根据题意直线的斜率一定存在,又焦点,设过点的直线方程为,联立,得,.设,,则,. ∴.由得,,过,的抛物线的切线方程分别为,即,两式相加,得,化简,得,即,所以,两条切线交于点,该点显然在抛物线的准线:上.练真题TIDHNEG1.(2021·全国高考真题)抛物线的焦点到直线的距离为,则()A.1B.2C.D.4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.2.(2021·天津高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为()A.B.C.2D.3 【答案】A【分析】设公共焦点为,进而可得准线为,代入双曲线及渐近线方程,结合线段长度比值可得,再由双曲线离心率公式即可得解.【详解】设双曲线与抛物线的公共焦点为,则抛物线的准线为,令,则,解得,所以,又因为双曲线的渐近线方程为,所以,所以,即,所以,所以双曲线的离心率.故选:A.3.(2020·北京高考真题)设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线().A.经过点B.经过点C.平行于直线D.垂直于直线【答案】B【解析】如图所示:.因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.故选:B.4.(2021·全国高考真题)已知为坐标原点,抛物线:()的焦点为, 为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.【答案】【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,因为,所以,,所以的准线方程为故答案为:.5.(2020·山东海南省高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.【答案】【解析】∵抛物线的方程为,∴抛物线的焦点F坐标为,又∵直线AB过焦点F且斜率为,∴直线AB的方程为:代入抛物线方程消去y并化简得,解法一:解得 所以解法二:设,则,过分别作准线的垂线,设垂足分别为如图所示.故答案为:6.(2020·浙江省高考真题)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).(Ⅰ)若,求抛物线的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值. 【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)当时,的方程为,故抛物线的焦点坐标为;(Ⅱ)设,由,,由在抛物线上,所以,又,,,.由即,所以,,,所以,的最大值为,此时.法2:设直线,.将直线的方程代入椭圆得:,所以点的纵坐标为. 将直线的方程代入抛物线得:,所以,解得,因此,由解得,所以当时,取到最大值为.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022新高考数学人教A版一轮总复习训练9.5抛物线专题检测(带解析)
数学一轮复习专题1.1 集合(新教材新高考)(练)教师版
数学一轮复习专题3.4 幂函数 (新教材新高考)(练)教师版
数学一轮复习专题3.8 函数与方程 (新教材新高考)(练)教师版
数学一轮复习专题7.4 数列求和 (新教材新高考)(练)教师版
数学一轮复习专题7.5 数列的综合应用 (新教材新高考)(练)教师版
数学一轮复习专题7.6 数学归纳法 (新教材新高考)(练)教师版
数学一轮复习专题9.1 直线与直线方程 (新教材新高考)(练)教师版
数学一轮复习专题9.3 椭圆 (新教材新高考)(练)教师版
数学一轮复习专题9.4 双曲线 (新教材新高考)(练)教师版
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-10-24 13:20:02
页数:18
价格:¥5
大小:971.07 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划