十年高考数学真题分项汇编(2014-2023)(文科)专题18概率统计填空题(文科)(Word版附解析)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
十年(2014-2023)年高考真题分项汇编—概率统计填空题目录题型三:简单的随机抽样1题型四:用样本估计总体2题型六:独立性检验7题型七:事件与概率7题型九:概率统计综合14题型一:简单的随机抽样一、填空题1.(2018年高考数学课标Ⅲ卷(文)·第14题)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样解析:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法.2.(2014高考数学天津文科·第9题)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取_______名学生.【答案】60解析:应从一年级抽取(名).3.(2014高考数学上海文科·第5题)某校高一、高二、高三分别有学生1600名、1200名、800名。为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样。若高三抽取20名学生,则高一、高二共需抽取的学生数为.【答案】70解析:4.(2014高考数学湖北文科·第11题)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.【答案】1800
解析:设乙设备生产的产品总数为n,则=,解得n=1800.5.(2015高考数学福建文科·第13题)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.【答案】解析:由题意得抽样比例为,故应抽取的男生人数为.6.(2017年高考数学江苏文理科·第3题)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取____________件.【答案】18
解析:所求人数为,故答案为18.7.(2016高考数学上海文科·第4题)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是.(米)【答案】1.76【解析】将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.76,1.78,1.80,这五个数的中位数是第三个为1.76.8.(2016高考数学江苏文理科·第4题)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.【答案】.解析:,.题型二:用样本估计总体一、多选题1.(2023年新课标全国Ⅰ卷·第9题)有一组样本数据,其中是最小值,是最大值,则( )A.的平均数等于的平均数B.的中位数等于的中位数C.的标准差不小于的标准差
D.的极差不大于的极差【答案】BD解析:对于选项A:设的平均数为,的平均数为,则,因为没有确定的大小关系,所以无法判断的大小,例如:,可得;例如,可得;例如,可得;故A错误;对于选项B:不妨设,可知的中位数等于的中位数均为,故B正确;对于选项C:因为是最小值,是最大值,则的波动性不大于的波动性,即的标准差不大于的标准差,例如:,则平均数,标准差,,则平均数,标准差,显然,即;故C错误;对于选项D:不妨设,则,当且仅当时,等号成立,故D正确;故选:BD.2.(2021年新高考Ⅰ卷·第9题)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )A.两组样本数据的样本平均数相同
B.两组样本数据样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD解析:A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选CD.3.(2020年新高考全国卷Ⅱ数学(海南)·第9题)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;【答案】CD解析:由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;4.(2021年新高考全国Ⅱ卷·第9题)下列统计量中,能度量样本的离散程度的是( )A.样本的标准差B.样本的中位数
C.样本的极差D.样本的平均数【答案】AC解析:由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势,故选AC.二、填空题1.(2020江苏高考·第3题)已知一组数据的平均数为4,则的值是_____.【答案】2【解析】数据的平均数为4,,即.故答案为:2.2.(2019·江苏·文理·第5题)已知一组数据6,7,8,8,9,10,则该组数据的方差是.【答案】【解析】由所以.3.(2018年高考数学江苏卷·第3题)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90解析:由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为所求人数为.4.(2014高考数学江苏·第6题)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.
10080901101201300.0100.0150.0200.0250.030底部周长/cm(第6题)【答案】24解析:由题意在抽测的60株树木中,底部周长小于100cm的株数为(0.015+0.025)1060=24.5.(2015高考数学湖北文科·第14题)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示.(Ⅰ)直方图中的_________;(Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.解析:由频率分布直方图及频率和等于1可得,解之得.于是消费金额在区间内频率为,所以消费金额在区间内的购物者的人数为:,故应填3;6000.考点:本题考查频率分布直方图,属基础题.6.(2015高考数学广东文科·第12题)已知样本数据,,,的均值,则样本数据,,,的均值为.【答案】解析:因为样本数据,,,的均值,所以样本数据,,,的均值为,所以答案应填:.7.(2015高考数学江苏文理·第2题)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为_______.【答案】6
解析:题型三:独立性检验一、填空题1.(2015高考数学北京文科·第14题)高三年级位学生参加期末考试,某班位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【答案】乙;数学解析:①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.题型四:事件与概率一、多选题1.(2023年新课标全国Ⅱ卷·第12题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3
次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).( )A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【答案】ABD解析:对于A,依次发送1,0,1,则依次收到l,0,1的事件是发送1接收1、发送0接收0、发送1接收1的3个事件的积,它们相互独立,所以所求概率为,A正确;对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到l,0,1的事件,是发送1接收1、发送1接收0、发送1接收1的3个事件的积,它们相互独立,所以所求概率为,B正确;对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,它们互斥,由选项B知,所以所求的概率为,C错误;对于D,由选项C知,三次传输,发送0,则译码为0的概率,单次传输发送0,则译码为0的概率,而,因此,即,D正确.故选:ABD一、填空题1.(2023年天津卷·第13题)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为.这三个盒子中黑球占总数的比例分别为.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.【答案】①.②.##解析:设甲、乙、丙三个盒子中的球的个数分别为,所以总数为,所以甲盒中黑球个数为,白球个数为;甲盒中黑球个数为,白球个数为;甲盒中黑球个数为,白球个数为;
记“从三个盒子中各取一个球,取到的球都是黑球”为事件,所以,;记“将三个盒子混合后取出一个球,是白球”为事件,黑球总共有个,白球共有个,所以,.故答案为:;.2.(2021年高考浙江卷·第15题)袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则___________,___________.【答案】(1).1(2).解析:,所以,,所以,则.由于.故答案为1;.3.(2022年高考全国乙卷数学(文)·第14题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】解析:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;其中,甲、乙都入选的选法有3种,故所求概率.故答案为:.4.(2021高考天津·第14题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.
【答案】①.②.解析:由题可得一次活动中,甲获胜的概率为;则在3次活动中,甲至少获胜2次的概率为.故答案为:;.5.(2020天津高考·第13题)已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.【答案】(1).(2).【解析】甲、乙两球落入盒子的概率分别为,且两球是否落入盒子互不影响,所以甲、乙都落入盒子概率为,甲、乙两球都不落入盒子的概率为,所以甲、乙两球至少有一个落入盒子的概率为.故答案为:;.6.(2020江苏高考·第4题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.【答案】【解析】根据题意可得基本事件数总为个.点数和为5的基本事件有,,,共4个.∴出现向上的点数和为5的概率为.故答案为:.8.(2019·江苏·文理·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.【答案】【解析】从5名学生中抽取2名学生,共有10种方法,其中不含女生的方法有3种,因此所求概率为.9.(2018年高考数学江苏卷·第6题)某兴趣小组有2名男生和3名女生,现从中任选2
名学生去参加活动,则恰好选中2名女生的概率为.【答案】解析:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为.11.(2014高考数学重庆文科·第15题)某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时间到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答).【答案】.解析:本题源于课本,属于几何概型,由题意可知有两个变量,因此是与面积有关的几何概型,如图建立平面直角坐标系,分别设小张到达学校的时间是,小王到达学校的时间为,则满足,那么小张和小王到达学校的情况可以用如图中的正方形表示,而小张比小王至少早到5分钟可以用不等式表示,所以小张比小王至少早5分钟到校的概率为.12.(2014高考数学浙江文科·第14题)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是.【答案】解析:记“两人都中奖”为事件,设中一、二等奖及不中奖分别记为,那么甲、乙抽奖结果有,共种.其中甲、乙都中奖有,共种,所以.
14.(2014高考数学课标2文科·第13题)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【答案】解析:所有的基本事件有:红红,红白,红蓝,白红,白白,白蓝,蓝红,蓝白,蓝蓝;所求概率是。15.(2014高考数学课标1文科·第13题)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.【答案】解析:设数学书为A,B,语文书为C,则不同的排法共有(A,B,C),(A,C,B),(B,C,A),(B,A,C),(C,A,B),(C,B,A)共6种排列方法,其中2本数学书相邻的情况有4种情况,故所求概率为.16.(2014高考数学广东文科·第12题)从字母中任取两个不同的字母,则取到字母的概率为.【答案】解析:所有事件有共个,其中含有字母的基本事件有,共个,所以所求事件的概率是.17.(2014高考数学江苏·第4题)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是.【答案】解析:从1,2,3,6这4个数中任取2个数共有种取法,其中乘积为6的有和两种取法,因此所求概率为.18.(2014高考数学福建文科·第13题)如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为___________【答案】
解析:正方形的面积为,设阴影部分的面积为S,因为随机撒1000粒豆子,有180粒落到阴影部分,所以由几何概型的概率公式进行估计得,即.19.(2015高考数学重庆文科·第15题)在区间上随机地选择一个数,则方程有两个负根的概率为________.【答案】解析:方程有两个负根的充要条件是即或,又因为,所以使方程有两个负根的p的取值范围为,故所求的概率,故填:.20.(2015高考数学江苏文理·第5题)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为_______.【答案】解析:从4只球中一次随机摸出2只,共有6种摸法,其中两只球颜色相同的只有1种,不同的共有5种,所以其概率为21.(2017年高考数学上海(文理科)·第13题)已知四个函数:①;②;③;④.从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为________.【答案】【解析】①③、①④的图像有一个公共点,∴概率为.22.(2017年高考数学江苏文理科·第7题)记函数的定义域为.在区间上随机取一个数,则的概率是________.【答案】
解析:由,得,根据几何概型的概率计算公式得的概率是.23.(2016高考数学四川文科·第13题)从、、、任取两个不同的数字,分别记为、,则
为整数的概率是.【答案】解析:从2,3,8,9中任取两个数记为,作为作为对数的底数与真数,共有个不同的基本事件,其中为整数的只有两个基本事件,所以其概率.25.(2016高考数学江苏文理科·第7题)将一个质地均匀的骰子(一种各个面上分别标有个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】.解析:将先后两次点数记为,则共有个等可能基本事件,其中点数之和大于等于10有六种,则点数之和小于10共有30种,概率为.题型五:概率统计综合一、填空题1.(2019·全国Ⅱ·文·第14题)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.【答案0.98
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)