首页

2020-2021学年浙江省宁波市某校高一(上)期中数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

2020-2021学年浙江省宁波市某校高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合蛨ۍ앐ɼ蘀ڂ앐,蛨ۍ앐ɼ앐,则蛨䁧A.䁞B.䁞蘀C.䁞蘀D.䁧ڂ䁞蘀2.已知关于앐的不等式ڂ䁧为集解的洠ڂ蘀䁞,则的值为()앐A.蛨ڂB.蛨ڂ蘀C.蛨蘀D.蛨ڂ앐3.函数䁧앐=ڂ䁧洠䁞的图象可能是()A.B.C.D.4.已知,,则是蘀蘀的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既不充分也不必要条件앐蘀ڂ蘀앐5.记函数䁧앐=在区间蘀䁞上的最大值和最小值分别为、,则앐ڂ蛨䁧蘀蘀A.B.C.D.蘀蘀蘀앐ڂڂ䁧洠,且的6.已知幂函数䁧앐=䁧蘀ڂ앐的图象过函数䁧앐=蘀图象所经过的定点,则的值等于()蘀A.B.C.蘀D.蘀蘀蘀䁧ڂ앐䁞䁧앐൅,7.䁧앐蛨是定义在䁧ڂ䁞上是减函数,则的取值范ڂ앐䁞䁧앐,试卷第1页,总7页,围是䁧A.䁞B.䁞C.䁧䁞D.䁧ڂ䁞앐8.设函数䁧앐蛨䁧洠,且,记表示不超过的最大整数,例如ڂ앐Ǥ蛨ڂ䁧ڂ앐䁧数函么那.蘀蛨Ǥ蘀,蛨Ǥ,蘀ڂ앐的值域是()蘀蘀A.ۍ.D䁞ڂۍ.C䁞䁞ڂۍ.B蘀䁞䁞ۍ䁞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9.下列各式中一定成立的有()蘀A.䁧=B.䁧ڂ=C.앐=䁧앐D.=10.若,,,则下列命题一定成立的是()A.若蘀洠蘀,则洠B.若蘀洠蘀,则洠C.若蘀洠蘀,则洠D.若洠,则洠11.定义在上的奇函数䁧앐和偶函数䁧앐满足:䁧앐䁧앐蛨앐,下列结论正确的有()앐ڂڂ앐A.䁧앐=,且൅䁧൅䁧蘀蘀B.앐,总有䁧앐蘀ڂ䁧앐蘀蛨C.앐,总有䁧ڂ앐䁧ڂ앐䁧앐䁧앐蛨D.앐,使得䁧蘀앐洠蘀䁧앐䁧앐12.已知䁧앐是定义在上的奇函数,且当앐൅时,䁧앐蛨ڂ앐ڂ蘀앐ڂ蘀,则以下说法错误的有()A.当앐洠时,䁧앐蛨앐蘀ڂ앐ڂ蘀B.函数䁧앐的单调递减区间是ڂ,蘀蘀C.䁧앐ڂ洠的解集为䁧ڂ䁞䁧䁞蘀䁧䁞D.䁧앐蛨有个解三、填空题:本题共4小题,每小题5分,共20分.)13.幂函数䁧앐的图象经过点䁧,,则䁧蛨________.试卷第2页,总7页,앐蘀ڂ앐ڂ14.函数䁧앐蛨䁧的递增区间是________.蘀蘀蘀蘀15.已知二次不等式앐蘀앐洠的解集ڂ앐ɼ앐ۍ,且洠,则的最小值ڂ为________.16.已知函数䁧앐的值域䁞䁧앐ڂ蘀䁞蘀,函数䁧앐蛨앐ڂ,앐ڂ蘀䁞蘀,앐ڂ蘀䁞蘀,总앐ڂ蘀䁞蘀,使得䁧앐蛨䁧앐成立,则实数的取值范围是________.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)ڂ17.(1)计算:Ǥڂڂ䁧ڂ䁧;17.ڂ蘀蘀(2)若,䁧䁞,化简:蘀䁧.18.已知,命题앐䁞,使得䁧ڂ앐ڂ洠;命题앐,使得앐蘀앐洠.(1)写出命题的否定¬,并求¬为真时,实数的取值范围;(2)若命题,有且只有一个为真,求实数的取值范围.19.已知集合蛨ڂ앐ڂ蘀앐ɼ앐ۍ蛨合集,앐蘀앐ɼ앐ۍ䁧൅.(1)当蛨时,求集合;(2)若,求实数的取值范围.20.已知앐,且앐蛨.(1)求实数앐蘀蘀蘀앐的最小值;(2)求的取值范围;앐蘀(3)若对于任意的앐,,存在实数,,使得䁧ɼڂ蘀앐蘀ɼ蘀成立,求实数的取值范围.蘀앐21.已知函数䁧앐=.蘀앐ڂ(1)判断函数䁧앐的奇偶性,并证明;(2)用单调性的定义证明:函数䁧앐在区间䁧䁞上单调递减;(3)求关于앐的不等式䁧앐蘀䁧蘀앐洠的解集.22.已知函数蛨䁧앐的定义域为,如果存在区间䁞,使得ۍɼ蛨䁧앐䁞앐䁞蛨䁞,则称区间䁞为函数蛨䁧앐的一个和谐区间.(1)直接写出函数䁧앐蛨앐的所有和谐区间;(2)若区间䁞是函数䁧앐蛨ɼ앐ڂ蘀ɼ的一个和谐区间,求实数的值;蘀试卷第3页,总7页,(3)若函数䁧앐蛨앐蘀ڂ蘀앐䁧存在和谐区间,求实数的取值范围.试卷第4页,总7页,参考答案与试题解析2020-2021学年浙江省宁波市某校高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.B3.D4.A5.C6.B7.A8.D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.B,D10.B,C11.A,B,C12.A,B,D三、填空题:本题共4小题,每小题5分,共20分.13.14.䁧ڂ䁞ڂ蘀15.蘀蘀16.䁧ڂ䁞ڂ,蘀蘀四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。ڂ䁧ڂ17.原式蛨ڂڂ蛨ڂ蘀ڂ蛨;蘀蘀ڂڂ蘀蘀原式蛨蘀蘀蛨蛨.18.¬앐䁧䁞使得䁧ڂ앐ڂ,即ڂ得,ڂ,앐解得蘀.命题:存在앐䁞使得䁧ڂ앐ڂ洠为真,则洠蘀;命题:对于앐使得앐蘀앐洠为真,则൅,得ڂ൅൅.若真假则有;假真则有ڂ൅蘀;综上,、有且只有一个为真时,的取值范围是ڂ൅蘀或.19.当蛨时,蛨ۍ앐ɼڂ൅앐൅,∴蛨ڂ앐ɼ앐ۍ蛨,앐或ڂ앐ɼ앐ۍ或앐;试卷第5页,总7页,蛨ڂڂ앐䁧앐䁧ɼ앐ۍ൅且,ڂڂڂ∴或,解得ڂ,ڂ∴实数的取值范围为ڂ䁞.蘀蘀蘀20.앐蛨,所以蛨ڂ앐,앐䁧䁞,앐蘀앐蛨䁧앐ڂ蘀,蘀蘀蘀当앐==时,앐蘀앐取得最小值蘀,无最大值.蘀앐앐蘀=䁧䁧앐蛨蘀蛨.当且仅当앐蛨,蛨时,앐앐앐앐取得最小值.的取值范围䁞.앐对于任意的앐,都有,且当앐时,,앐앐蘀蘀①当时,有䁧ɼڂ蘀ɼɼڂ蘀ɼ蘀,对于存在实앐蘀蘀蘀数,不等式成立,有蘀ɼڂ蘀ɼ蘀,即蘀蘀蘀,解得ڂ或,所以.蘀②当൅时,䁧ڂɼ蘀ڂɼ䁧以所,ڂ,对于任意的앐앐앐,,原不等式不可能恒成立,综上,所求所以实数的范围是䁞.21.函数䁧앐为奇函数,证明如下:䁧앐的定义域是,关于原点对称,ڂ앐앐蘀蘀앐蘀又䁧ڂ앐蛨蘀ڂ앐ڂ蛨蛨ڂ蘀앐蛨ڂ䁧앐,蘀앐ڂ故䁧앐在上是奇函数;设任意앐,앐蘀䁧䁞,且앐൅앐蘀,蘀앐蘀앐蘀蘀䁧蘀앐蘀ڂ蘀앐则䁧앐ڂ蘀앐蘀䁧ڂ앐蘀䁧蛨ڂ蘀앐蘀ڂڂ앐蘀蛨蘀앐䁧ڂ,∵൅앐൅앐,∴蘀앐蘀ڂ蘀앐蘀䁧ڂ앐蘀䁧,洠앐蘀ڂ洠,蘀故䁧앐ڂ䁧앐蘀洠,即䁧앐洠䁧앐蘀,䁧앐在䁧䁞递减;蘀앐蘀䁧앐==蘀앐ڂ앐蘀ڂ由函数䁧앐为奇函数,且䁧앐蘀䁧蘀앐洠,得䁧앐蘀洠ڂ䁧蘀앐蛨䁧ڂ蘀앐,又由(2)知,当앐洠时,䁧앐洠;当앐൅时,䁧앐൅,所以①当앐洠时,앐蘀洠,ڂ蘀앐൅,有䁧앐蘀洠,䁧ڂ蘀앐൅,故原不等式成立;②当앐൅时,앐蘀,ڂ蘀앐䁧䁞,䁧앐在䁧䁞内单调递减,由䁧앐蘀䁧蘀앐洠,得䁧앐蘀洠ڂ䁧蘀앐蛨䁧ڂ蘀앐,有앐蘀൅ڂ蘀앐,解得ڂ蘀൅앐൅,综上,原不等式的解集为ۍ앐ɼڂ蘀൅앐൅或앐洠.22.函数蛨䁧앐蛨앐的定义域为,由题意令앐蛨앐,앐蛨,앐蛨,∴函数䁧앐蛨앐的所有“和谐区间”为ڂ,䁞,䁞ڂ䁞;试卷第6页,总7页,若䁞䁧洠为函数䁧앐蛨ɼ앐ڂ蘀ɼ的一个“和谐区间”,蘀令ɼ앐ڂ蘀ɼ蛨앐,解得앐蛨,앐蛨,蘀当蛨即앐䁞时,䁧앐蛨ɼ앐ڂ蘀ɼ䁞,满足题意;蘀当蛨即앐䁞时,䁧앐蛨ɼ앐ڂ蘀ɼ䁞蘀,不满足题意;蘀由题意知앐蛨时满足题意,∴的值为;令函数䁧앐蛨앐蘀ڂ蘀앐蛨앐,则앐蘀ڂ앐蛨有解,故蛨ڂ,解得:,故的取值范围是䁧ڂ䁞.试卷第7页,总7页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2021-09-05 21:06:56 页数:7
价格:¥2 大小:43.21 KB
文章作者: 真水无香

推荐特供

MORE