首页

【三维设计】2022届高考数学一轮复习 教师备选作业 第八章 第六节 双曲线 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第八章第六节双曲线一、选择题1.“ab<0”是“方程ax2+by2=c表示双曲线”的(  )A.必要但不充分条件    B.充分但不必要条件C.充分必要条件D.既不充分也不必要条件2.已知双曲线-=1(a>0,b>0)的渐近线方程为y=±x,若顶点到渐近线的距离为1,则双曲线的方程为(  )A.-=1B.-=1C.-=1D.-=13.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为(  )A.B.C.2D.34.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为(  )A.-2B.-C.1D.05.设椭圆+=1和双曲线-x2=1的公共焦点分别为F1、F2,P为这两条曲线的一个交点,则cos∠F1PF2的值为(  )A.B.C.D.-6.已知双曲线mx2-y2=1(m>0)的右顶点为A,若该双曲线右支上存在两点B、C使得△ABC为等腰直角三角形,则实数m的值可能为(  )A.B.1C.2D.3二、填空题6\n7.已知点(2,3)在双曲线C:-=1(a>0,b>0)上,C的焦距为4,则它的离心率为________.8.已知双曲线kx2-y2=1(k>0)的一条渐近线与直线2x+y+1=0垂直,那么双曲线的离心率为________;渐近线方程为____________.9.P为双曲线x2-=1右支上一点,M、N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,则|PM|-|PN|的最大值为________.三、解答题10.已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的一条渐近线平行,求此双曲线的方程.11.双曲线-=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥c,求双曲线的离心率e的取值范围.12.P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M、N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.6\n详解答案一、选择题1.解析:若ax2+by2=c表示双曲线,即+=1表示双曲线,则<0,这就是说“ab<0”是必要条件,然而若ab<0,c可以等于0,即“ab<0”不是充分条件.答案:A2.解析:不妨设顶点(a,0)到直线x-3y=0的距离为1,即=1,解得a=2.又=,所以b=,所以双曲线的方程为-=1.答案:A3.解析:设双曲线C的方程为-=1,焦点F(-c,0),将x=-c代入-=1可得y2=,所以|AB|=2×=2×2a.∴b2=2a2.c2=a2+b2=3a2.∴e==.答案:B4.解析:设点P(x,y),其中x≥1.依题意得A1(-1,0)、F2(2,0),则有=x2-1,y2=3(x2-1),·=(-1-x,-y)·(2-x,-y)=(x+1)(x-2)+y2=x2+3(x2-1)-x-2=4x2-x-5=4(x-)2-,其中x≥1.因此,当x=1时,·取得最小值-2.答案:A5.解析:由题意可知m-2=3+1,解得m=6.法一:由椭圆与双曲线的对称性,不妨设点P为第一象限内的点,F1(0,-2),F2(0,2),联立+=1与-x2=1组成方程组,解得P(,6\n).所以由两点距离公式计算得|PF1|=+,|PF2|=-.又|F1F2|=4,所以由余弦定理得cos∠F1PF2==.法二:由椭圆与双曲线的对称性,不妨设点P为第一象限内的点,F1(0,-2).F2(0,2),由题意得|PF1|+|PF2|=2,|PF1|-|PF2|=2,|F1F2|=4,解得|PF1|=+,|PF2|=-,同上由余弦定理可得cos∠F1PF2=.答案:B6.解析:由题意可得,点A的坐标为(,0),设直线AB的方程为y=tan45°(x-),即x=y+,与双曲线方程联立可得,,则(m-1)y2+2y=0,解得y=0或y=.由题意知y=为B点的纵坐标,且满足>0,即0<m<1,根据选项知.答案:A二、填空题7.解析:根据点(2,3)在双曲线上,可以很容易建立一个关于a,b的等式,即-=1,考虑到焦距为4,这也是一个关于c的等式,2c=4,即c=2.再有双曲线自身的一个等式a2+b2=c2,这样,三个方程,三个未知量,可以解出a=1,b=,c=2,所以,离心率e=2.答案:28.解析:双曲线kx2-y2=1的渐近线方程是y=±x.∵双曲线的一条渐近线与直线2x+y+1=0垂直,∴=,k=,∴双曲线的离心率为e==,渐近线方程为x±y=0.答案: x±y=09.解析:双曲线的两个焦点为F1(-4,0)、F2(4,0),为两个圆的圆心,半径分别为r1=2,r2=1,|PM|max=|PF1|+2,|PN|min=|PF2|-1,故|PM|-|PN|的最大值为(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=5.答案:56\n三、解答题10.解:切点为P(3,-1)的圆x2+y2=10的切线方程是3x-y=10.∵双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称,∴两渐近线方程为3x±y=0.设所求双曲线方程为9x2-y2=λ(λ≠0).∵点P(3,-1)在双曲线上,代入上式可得λ=80,∴所求的双曲线方程为-=1.11.解:直线l的方程为+=1,即bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离d1=,同理得到点(-1,0)到直线l的距离d2=.∴s=d1+d2==.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2,即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,∴e的取值范围是[,].12.解:(1)点P(x0,y0)(x≠±a)在双曲线-=1上,有-=1.由题意又有·=,可得a2=5b2,c2=a2+b2=6b2,则e==.(2)联立,得4x2-10cx+35b2=0,设A(x1,y1),B(x2,y2),则①设=(x3,y3),=λ+,即6\n又C为双曲线上一点,即x-5y=5b2,有(λx1+x2)2-5(λy1+y2)2=5b2.化简得:λ2(x-5y)+(x-5y)+2λ(x1x2-5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线上,所以x-5y=5b2,x-5y=5b2.由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2,得:λ2+4λ=0,解出λ=0,或λ=-4.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:58:25 页数:6
价格:¥3 大小:42.98 KB
文章作者:U-336598

推荐特供

MORE