首页

【三维设计】2022届高考数学一轮复习 教师备选作业 第八章 第五节 椭圆 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

第八章第五节椭圆一、选择题1.已知F1,F2是椭圆+=1的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若有两边之和是10,则第三边的长度为(  )A.6           B.5C.4D.32.若直线mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点个数为(  )A.至多一个B.2个C.1个D.0个3.已知椭圆C1:+=1(a>b>0)与双曲线C2:x2-=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )A.a2=B.a2=13C.b2=D.b2=24.已知椭圆+y2=1的左、右焦点分别为F1、F2,点M在该椭圆上,且·=0,则点M到y轴的距离为(  )A.B.C.D.5.方程为+=1(a>b>0)的椭圆的左顶点为A,左、右焦点分别为F1、F2,D是它短轴上的一个端点,若3=+2,则该椭圆的离心率为(  )A.B.C.D.7\n6.已知椭圆E:+=1,对于任意实数k,下列直线被椭圆E截得的弦长与l:y=kx+1被椭圆E截得的弦长不可能相等的是(  )A.kx+y+k=0B.kx-y-1=0C.kx+y-k=0D.kx+y-2=0二、填空题7.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左顶点为A,左焦点为F,上顶点为B,若∠BAO+∠BFO=90°,则椭圆的离心率是________.8.设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________.9.设F1,F2分别为椭圆+y2=1的左、右焦点,点A,B在椭圆上,若=5,则点A的坐标是________.三、解答题10.设椭圆C∶+=1(a>b>0)过点(0,4),离心率为.(1)求C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.11.如图,在平面直角坐标系xOy中,M、N分别是椭圆+=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C.连接AC,并延长交椭圆于点B.设直线PA的斜率为k.(1)当直线PA平分线段MN时,求k的值;7\n(2)当k=2时,求点P到直线AB的距离d;(3)对任意的k>0,求证:PA⊥PB.12.已知椭圆G∶+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.(1)求椭圆G的焦点坐标和离心率;(2)将|AB|表示为m的函数,并求|AB|的最大值.详解答案一、选择题1.解析:根据椭圆定义,知△AF1B的周长为4a=16,故所求的第三边的长度为16-10=6.答案:A2.解析:∵直线mx+ny=4和圆O:x2+y2=4没有交点,∴>2,∴m2+n2<4,∴+<+=1-m2<1,∴点(m,n)在椭圆+=1的内部,∴过点(m,n)的直线与椭圆+=1的交点个数为2个.答案:B3.解析:如图所示设直线AB与椭圆C1的一个交点为C(靠近A的交点),则|OC7\n|=,因tan∠COx=2,∴sin∠COx=,cos∠COx=,则C的坐标为(,),代入椭圆方程得+=1,∵5=a2-b2,∴b2=.答案:C4.解析:由题意,得F1(-,0),F2(,0).设M(x,y),则·=(--x,-y)·(-x,-y)=0,整理得x2+y2=3①.又因为点M在椭圆上,故+y2=1,即y2=1-②.将②代入①,得x2=2,解得x=±.故点M到y轴的距离为.答案:B5.解析:设点D(0,b),则=(-c,-b),=(-a,-b),=(c,-b),由3=+2得-3c=-a+2c,即a=5c,故e=.答案:D6.解析:A选项中,当k=-1时,两直线关于y轴对称,两直线被椭圆E截得的弦长相等;B选项中,当k=1时,两直线平行,两直线被椭圆E截得的弦长相等;C选项中,当k=1时,两直线关于y轴对称,两直线被椭圆E截得的弦长相等.答案:D二、填空题7.解析:∵∠BAO+∠BFO=90°,∴∠BAO=∠FBO.∴=.即OB2=OA·OF,∴b2=ac.∴a2-c2-ac=0.∴e2+e-1=0.∴e==.又∵0<e<1,7\n∴e=.答案:8.解析:由椭圆定义知|PM|+|PF1|=|PM|+2×5-|PF2|,而|PM|-|PF2|≤|MF2|=5,所以|PM|+|PF1|≤2×5+5=15.答案:159.解析:根据题意设A点坐标为(m,n),B点坐标为(c,d).F1、F2分别为椭圆的左、右焦点,其坐标分别为(-,0)、(,0),可得=(m+,n)=(c-,d).∵=5,∴c=,d=.∵点A、B都在椭圆上,∴+n2=1,+()2=1.解得m=0,n=±1,故点A坐标为(0,±1).答案:(0,±1)三、解答题10.解:(1)将(0,4)代入C的方程得=1,∴b=4,由e==得=,即1-=,∴a=5,∴C的方程为+=1.(2)过点(3,0)且斜率为的直线方程为y=(x-3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x-3)代入C的方程,得+=1,即x2-3x-8=0,解得x1=,x2=,∴AB的中点坐标==,==(x1+x2-6)=-,即中点坐标为(,-).7\n11.解:由题设知,a=2,b=,故M(-2,0),N(0,-),所以线段MN中点的坐标为(-1,-).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以k==.(2)直线PA的方程为y=2x,代入椭圆方程得+=1,解得x=±,因此P(,),A(-,-).于是C(,0),直线AC的斜率为=1,故直线AB的方程为x-y-=0.因此,d==.(3)证明:法一:将直线PA的方程y=kx代入+=1,解得x=±记μ=,则P(μ,μk),A(-μ,-μk).于是C(μ,0).故直线AB的斜率为=,其方程为y=(x-μ),代入椭圆方程并由μ=得(2+k2)x2-2μk2x-μ2(3k2+2)=0,解得x=或x=-μ.因此B(,).于是直线PB的斜率k1===-.因此k1k=-1,所以PA⊥PB.法二:设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(-x1,-y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2===.从而k1k+1=2k1k2+1=2··+1=+1===0.因此k1k=-1,所以PA⊥PB.12.解:(1)由已知得a=2,b=1,7\n所以c==.所以椭圆G的焦点坐标为(-,0),(,0),离心率为e==.(2)由题意知,|m|≥1.当m=1时,切线l的方程为x=1,点A,B的坐标分别为(1,),(1,-),此时|AB|=.当m=-1时,同理可得|AB|=.当|m|>1时,设切线l的方程为y=k(x-m).由得(1+4k2)x2-8k2mx+4k2m2-4=0.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=.又由l与圆x2+y2=1相切,得=1,即m2k2=k2+1.所以|AB|====.由于当m=±1时,|AB|=,所以|AB|=,m∈(-∞,-1]∪[1,+∞).因为|AB|==≤2,且当m=±时,|AB|=2,所以|AB|的最大值为2.7

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:58:24 页数:7
价格:¥3 大小:93.03 KB
文章作者:U-336598

推荐特供

MORE