首页

【三维设计】2022届高考数学一轮复习 教师备选作业 第八章 第七节 抛物线 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第八章第七节抛物线一、选择题1.已知抛物线x2=ay的焦点恰好为双曲线y2-x2=2的上焦点,则a等于(  )A.1            B.4C.8D.162.抛物线y=-4x2上的一点M到焦点的距离为1,则点M的纵坐标是(  )A.-B.-C.D.3.已知F是拋物线y2=x的焦点,A,B是该拋物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  )A.B.1C.D.4.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是(  )A.相离B.相交C.相切D.不确定5.已知F为抛物线y2=8x的焦点,过F且斜率为1的直线交抛物线于A、B两点,则||FA|-|FB||的值等于(  )A.4B.8C.8D.166.在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是(  )A.(-2,1)B.(1,2)C.(2,1)D.(-1,2)二、填空题7.以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为________.8.已知抛物线的顶点在原点,对称轴为y轴,抛物线上一点Q(-3,m)到焦点的距离是5,则抛物线的方程为________.9.已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么||+||=________.5\n三、解答题10.根据下列条件求抛物线的标准方程:(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;(2)过点P(2,-4).11.已知点A(-1,0),B(1,-1),抛物线C:y2=4x,O为坐标原点,过点A的动直线l交抛物线C于M,P两点,直线MB交抛物线C于另一点Q.若向量与的夹角为,求△POM的面积.12.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足∥,·=·,M点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.详解答案一、选择题5\n1.解析:根据抛物线方程可得其焦点坐标为(0,),双曲线的上焦点为(0,2),依题意则有=2,解得a=8.答案:C2.解析:抛物线方程可化为x2=-,其准线方程为y=.设M(x0,y0),则由抛物线的定义,可知-y0=1⇒y0=-.答案:B3.解析:根据拋物线定义与梯形中位线定理,得线段AB中点到y轴的距离为:(|AF|+|BF|)-=-=.答案:C4.解析:设抛物线焦点弦为AB,中点为M,准线l,A1、B1分别为A、B在直线l上的射影,则|AA1|=|AF|,|BB1|=|BF|,于是M到l的距离d=(|AA1|+|BB1|)=(|AF|+|BF|)=|AB|=半径,故相切.答案:C5.解析:依题意F(2,0),所以直线方程为y=x-2由,消去y得x2-12x+4=0.设A(x1,y1),B(x2,y2),则||FA|-|FB||=|(x1+2)-(x2+2)|=|x1-x2|===8.答案:C6.解析:如图所示,直线l为抛物线y=2x2的准线,F为其焦点,PN⊥l,AN1⊥l,由抛物线的定义知,|PF|=|PN|,∴|AP|+|PF|=|AP|+|PN|≥|AN1|,当且仅当A、P、N三点共线时取等号.∴P点的横坐标与A点的横坐标相同即为1,则可排除A、C、D.答案:B二、填空题7.解析:抛物线的焦点为F(0,4),准线为y=-4,则圆心为(0,4),半径r=8.所以,圆的方程为x2+(y-4)2=64.答案:x2+(y-4)2=648.解析:设抛物线方程为x2=ay(a≠0),5\n则准线为y=-.∵Q(-3,m)在抛物线上,∴9=am.而点Q到焦点的距离等于点Q到准线的距离,∴|m-(-)|=5.将m=代入,得|+|=5,解得,a=±2,或a=±18,∴所求抛物线的方程为x2=±2y,或x2=±18y.答案:x2=±2y或x2=±18y9.解析:由,消去y,得x2-5x+4=0(*),方程(*)的两根为A、B两点的横坐标,故x1+x2=5,因为抛物线y2=4x的焦点为F(1,0),所以||+||=(x1+1)+(x2+1)=7答案:7三、解答题10.解:双曲线方程化为-=1,左顶点为(-3,0),由题意设抛物线方程为y2=-2px(p>0),则-=-3,∴p=6,∴抛物线方程为y2=-12x.(2)由于P(2,-4)在第四象限且抛物线对称轴为坐标轴,可设抛物线方程为y2=mx或x2=ny,代入P点坐标求得m=8,n=-1,∴所求抛物线方程为y2=8x或x2=-y.11.解:设点M(,y1),P(,y2),∵P,M,A三点共线,∴kAM=kPM,即=,即=,∴y1y2=4.5\n∴·=·+y1y2=5.∵向量与的夹角为,∴||·||·cos=5.∴S△POM=||·||·sin=.12.解:(1)设M(x,y)由已知得B(x,-3),A(0,-1).所以=(-x,-1-y),=(0,-3-y),=(x,-2).再由题意可知(+)·=0,即(-x,-4-2y)·(x,-2)=0.所以曲线C的方程为y=x2-2.(2)设P(x0,y0)为曲线C:y=x2-2上一点,因为y′=x,所以l的斜率为x0.因此曲线l的方程为y-y0=x0(x-x0),即x0x-2y+2y0-x=0.则O点到l的距离d=.又y0=x-2,所以d==(+)≥2,当x0=0时取等号,所以O点到l距离的最小值为2.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:58:23 页数:5
价格:¥3 大小:80.40 KB
文章作者:U-336598

推荐特供

MORE