首页

【三维设计】2022届高考数学一轮复习 教师备选作业 第九章 第六节 几何概型 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第九章第六节几何概型一、选择题1.已知三棱锥SABC,在三棱锥内任取一点P,使得VP-ABC<VSABC的概率是(  )A.          B.C.D.2.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于(  )A.B.C.D.3.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平等线相碰的概率是(  )A.B.C.D.4.已知P是△ABC所在平面内一点,++2=0,现将一粒黄豆随机撒在△PBC内,则黄豆落在△PBC内的概率是(  )A.B.C.D.5.在区间(0,1)内任取两个实数,则这两个实数的和大于的概率为(  )A.B.C.D.6.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π有零点的概率为(  )A.B.-5-\nC.D.二、填空题7.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.8.若m∈(0,3),则直线(m+2)x+(3-m)y-3=0与x轴、y轴围成的三角形的面积小于的概率为________.9.若不等式组表示的平面区域为M,x2+y2≤1所表示的平面区域为N,现随机向区域M内抛一粒豆子,则豆子落在区域N内的概率为________.三、解答题10.图(2)中实线围成的部分是长方体(图(1))的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,求此长方体的体积.11.已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立时的概率.-5-\n12.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.详解答案一、选择题1.解析:当P在三棱锥的中截面与下底面构成的三棱台内时符合要求,由几何概型知,P=1-=.答案:A2.解析:点E为边CD的中点,故所求的概率P==.答案:C3.解析:∵硬币的半径为r,∴当硬币的中心到直线的距离d>r时,硬币与直线不相碰.∴P==.答案:A4.解析:由题意可知,点P位于BC边的中线的中点处.记黄豆落在△PBC内为事件D,则P(D)==.答案:D5.解析:设这两个实数分别为x,y,则,满足x+y>的部分如图中阴影部分所示.所以这两个实数的和大于的概率为1-××=.答案:A6.解析:因为f(x)=x2+2ax-b2+π有零点,所以Δ=4a2-4(π-b2)≥0,即a2+b2-π≥0,由几何概型的概率计算公式可知所求概率为P=-5-\n==.答案:B二、填空题7.解析:以A、B、C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求.∴P==.答案:π8.解析:直线与两个坐标轴的交点分别为(,0),(0,),又当m∈(0,3)时,>0,>0,∴··<,解得0<m<2,∴P==.答案:9.解析:如图,△AOB为区域M,扇形COD为区域M内的区域N,A(3,3),B(1,-1),S△AOB=××3=3,S扇形COD=,所以豆子落在区域N内的概率为P==.答案:三、解答题10.解:设长方体的高为h,则图(2)中虚线围成的矩形长为2+2h,宽为1+2h,面积为(2+2h)(1+2h),展开图的面积为2+4h;由几何概型的概率公式知=,得h=3,所以长方体的体积是V=1×3=3.11.解:(1)a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.-5-\n因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),所以事件“a2≥4b”的概率为P=,即函数f(x)有零点的概率为.(2)a,b都是从区间[0,4]任取的一个数,f(1)=-1+a-b>0,即a-b>1,此为几何概型.所以事件“f(1)>0”的概率为P==.12.解:(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域内,属于几何概型,该平面区域的图形为下图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为,其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.-5-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:58:16 页数:5
价格:¥3 大小:131.42 KB
文章作者:U-336598

推荐特供

MORE