首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【走向高考】2022届高三数学一轮基础巩固 第11章 第1节 两个计数原理 理(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第11章 第1节 两个计数原理 理(含解析)北师大版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/5
2
/5
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
【走向高考】2022届高三数学一轮基础巩固第11章第1节两个计数原理(理)北师大版一、选择题1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A.10种B.20种C.25种D.32种[答案] D[解析] 因为每人均有两种选择方法,所以不同的报名方法有25=32种.2.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法为( )A.6种B.5种C.3种D.2种[答案] B[解析] 有3+2=5种.3.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A.240种B.360种C.480种D.720种[答案] C[解析] 本题考查了排列问题的应用.由题意,甲可从4个位置选择一个,其余元素不限制,所以所有不同次序共有AA=480.利用特殊元素优先安排的原则分步完成得到结论.4.某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位、个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0,千位、百位上都能取0.这样设计出来的密码共有( )A.90个B.99个C.100个D.112个[答案] C[解析] 由于千位、百位确定下来后十位、个位就随之确定,则只考虑千位、百位即可,千位、百位各有10种选择,所以有10×10=100(个).5.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A.16B.18C.24D.32-5-\n[答案] C[解析] 若将7个车位从左向右按1~7进行编号,则该3辆车有4种不同的停放方法:(1)停放在1~3号车位;(2)停放在5~7号车位;(3)停放在1,2,7号车位;(4)停放在1,6,7号车位.每一种停放方法均有A=6种,故共有24种不同的停放方法.6.某化工厂生产中需依次投放2种化工原料,现已知有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放,则不同的投放方案有( )A.10种B.12种C.15种D.16种[答案] C[解析] 依题意,可将所有的投放方案分成三类,①使用甲原料,有C·1=3种投放方案;②使用乙原料,有C·A=6种投放方案;③甲、乙原料都不使用,有A=6中投放方案,所以共有3+6+6=15种投放方案.二、填空题7.(原创题)美女换装游戏中,有5套裙子,4双鞋子,3顶帽子,要求裙、鞋、帽必须且只能各选择一件,则有________种装扮方案.[答案] 60[解析] 根据分步计数原理知,有5×4×3=60种.8.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3,4名,大师赛共有________场比赛.[答案] 16[解析] 小组赛共有2C场比赛;半决赛和决赛共有2+2=4场比赛;根据分类加法计数原理共有2C+4=16场比赛.9.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有________种.(用数字作答)[答案] 120[解析] 由已知条件可得第1块地有C种种植方法,则第2~4块地共有A种种植方法,由分步乘法计数原理可得,不同的种植方案有CA=120种.三、解答题10.一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.(1)从两个口袋里任取一封信,有多少种不同的取法?(2)从两个口袋里各取一封信,有多少种不同的取法?(3)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的投法?-5-\n[解析] (1)任取一封信,不论从哪个口袋里取,都能单独完成这件事,因此是两类办法.用分类加法计数原理,共有5+4=9(种).(2)各取一封信,不论从哪个口袋中取,都不能算完成了这件事,因此应分两步骤完成.由分步乘法计数原理,共有5×4=20(种).(3)第一封建信投入邮筒有4种可能,第二封建信仍有4种可能,…,第九封建信还有4种可能.由分步乘法计数原理可知,共有49=262144种不同的投法.一、选择题1.如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连起来,则不同的修筑方法共有( )A.8种B.12种C.16种D.20种[答案] C[解析] 修筑方案可分为两类,一类是“折线型”,用三条公路把四个村庄连在一条曲线上(如图(1),A-B-C-D),有A种方法;另一类是“星型”,以某一个村庄为中心,用三条公路发散状连接其他三个村庄(如图(2),A-B,A-C,A-D),有4种方法.共有12+4=16种方法.2.如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂色共有( )A.400种B.460种C.480种D.496种-5-\n[答案] C[解析] 从A开始,有6种方法,B有5种,C有4种,D有4种,∴不同涂法有6×5×4×4=480(种),故选C.二、填空题3.用数字2、3组成四位数,且数字2、3至少都出现一次,这样的四位数共有________个.(用数字作答)[答案] 14[解析] 数字2,3至少都出现一次,包括以下情况:“2”出现1次,“3”出现3次,共可组成C=4(个)四位数.“2”出现2次,“3”出现2次,共可组成C=6(个)四位数.“2”出现3次,“3”出现1次,共可组成C=4(个)四位数.综上所述,共可组成14个这样的四位数.4.江西省某中学,为了满足新课改的需要,要开设9门课程共学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有________种不同的选修方案.(用数值作答)[答案] 75[解析] 第一类,若从A、B、C三门选一门有C·C=60(种),第二类,若从其他六门中选4门有C=15(种),∴共有60+15=75种不同的方法.三、解答题5.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?[分析] 完成“确定点P”这件事需依次确定横、纵坐标,应用分步乘法计数原理.[解析] (1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法计数原理,得到平面上的点数是6×6=36个.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步乘法计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=B.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.-5-\n由(1)得不在直线y=x上的点共有36-6=30个.[点评] 利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.6.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,则不同的放法有多少种?[分析] 根据A球、B球所在位置进行分类讨论.[解析] 根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E有A=6种不同的放法,则根据分步计数原理,此时有A=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E有A=6种不同的放法,则根据分步计数原理,此时有A=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C,D,E有A种不同的放法,根据分步计数原理,此时有AA=18种不同的放法.综上所述,由分类计数原理得不同的放法共有6+6+18=30种.-5-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
全国版2023高考数学一轮复习第11章计数原理第1讲两个计数原理排列与组合试题2理含解析20230316110
全国版2023高考数学一轮复习第11章计数原理第1讲两个计数原理排列与组合试题1理含解析2023031619
【走向高考】2022届高三数学一轮基础巩固 第9章 第8节 曲线与方程 理(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第9章 第7节 双曲线(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第9章 第5节 椭圆(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第8章 第7节 空间向量及其运算(理(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第12章 第5节 数学归纳法 理(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第11章 第3节 二项式定理 理(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第11章 第2节 排列与组合 理(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第10章 第1节 抽样方法(含解析)北师大版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:14:19
页数:5
价格:¥3
大小:102.46 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划