首页

五年高考真题2022届高考数学复习第七章第五节推理与证明理全国通用

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

考点一 合情推理与演绎推理1.(2022·北京,8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有(  )A.2人B.3人C.4人D.5人解析 学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙.一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B.答案 B2.(2022·江西,6)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=(  )A.28B.76C.123D.199解析 利用归纳法:a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123.答案 C3.(2022·江西,7)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为(  )A.3125B.5625C.0625D.8125解析 由观察易知55的末四位数字为3125,56的末四位数字为5625,57的末四位数字为8125,58的末四位数字为0625,59的末四位数字为3125,故周期T=4.又由于2011=502×4+3,因此52011的末四位数字是8125.答案 D4.(2022·山东,11)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;……15\n照此规律,当n∈N*时,C+C+C+…+C=________.解析 观察等式,第1个等式右边为40=41-1,第2个等式右边为41=42-1,第3个等式右边为42=43-1,第4个等式右边为43=44-1,所以第n个等式右边为4n-1.答案 4n-15.(2022·福建,15)一个二元码是由0和1组成的数字串x1x2…xn(n∈N*),其中xk(k=1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算⊕定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于________.解析 (ⅰ)x4⊕x5⊕x6⊕x7=1⊕1⊕0⊕1=1,(ⅱ)x2⊕x3⊕x6⊕x7=1⊕0⊕0⊕1=0;(ⅲ)x1⊕x3⊕x5⊕x7=1⊕0⊕1⊕1=1.由(ⅰ)(ⅲ)知x5,x7有一个错误,(ⅱ)中没有错误,∴x5错误,故k等于5.答案 56.(2022·陕西,14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为________.解析 左边共n项,每项的符号为(-1)n+1,通项为(-1)n+1·n2.等式右边的值符号为(-1)n+1,各式为(-1)n+1(1+2+3+…+n)=(-1)n+1,∴第n个等式为12-22+32-42+…+(-1)n+1·n2=(-1)n+1·.答案 12-22+32-42+…+(-1)n+1n2=(-1)n+1·7.(2022·湖北,14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数115\n,3,6,10,…,第n个三角形数为=n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数 N(n,3)=n2+n,正方形数 N(n,4)=n2,五边形数 N(n,5)=n2-n,六边形数 N(n,6)=2n2-n,……    ……可以推测N(n,k)的表达式,由此计算N(10,24)=________.解析 由题中数据可猜想:含n2项的系数为首项是,公差是的等差数列,含n项的系数为首项是,公差是-的等差数列,因此N(n,k)=n2+n=n2+n.故N(10,24)=11n2-10n=11×102-10×10=1000.答案 10008.(2022·陕西,14)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是________.解析 三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.答案 F+V-E=29.(2022·福建,15)当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=.两边同时积分得:1dx+xdx+x2dx+…+xndx+…15\n=dx,从而得到如下等式:1×+×+×+…+×+…=ln2.请根据以上材料所蕴含的数学思想方法,计算:C×+C×+C×+…+C×=________.解析 由C+Cx+Cx2+…+Cxn=(1+x)n,两边同时积分得:C1dx+Cxdx+Cx2dx+…+Cxndx=(1+x)ndx,C+C+C+…+C=0=-=.答案 10.(2022·陕西,11)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个不等式为___________________________________________.解析 先观察左边,第一个不等式为2项相加,第二个不等式为3项相加,第三个不等式为4项相加,则第五个不等式应为6项相加,右边分子为分母的2倍减1,分母15\n即为所对应项数,故应填1+++++<.答案 1+++++<11.(2022·湖北,13)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N+)位回文数有________个.解析 (1)2位回文数均是不为0的自然数,故有9个;而对于3位回文数,首、末均相同且不为0,故有9种,而对于中间一数可含有0,故有10种,因此3位回文数有90种;对于4位回文数,首、末均相同且不为0,故有9种,对于中间两数则可含有0,故有10种,因此也有90种;(2)经归纳可得2n+1位回文数有9×10n个.答案 (1)90 (2)9×10n12.(2022·山东,15)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f[f1(x)]=,f3(x)=f[f2(x)]=,f4(x)=f[f3(x)]=,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,fn(x)=f[fn-1(x)]=________.解析 由f(x)=(x>0)得,f1(x)=f(x)=,f2(x)=f[f1(x)]==,f3(x)=f[f2(x)]=15\n=,f4(x)=f[f3(x)]==,……∴当n≥2且n∈N*时,fn(x)=f[fn-1(x)]=.答案 13.(2022·重庆,22)对正整数n,记In={1,2,…,n},Pn=.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并.解 (1)当k=4时,中有3个数与I7中的3个数重复,因此P7中元素的个数为7×7-3=46.(2)先证:当n≥15时,Pn不能分成两个不相交的稀疏集的并.若不然,设A,B为不相交的稀疏集,使A∪B=Pn⊇In,不妨设1∈A,则因1+3=22,故3∉A,即3∈B.同理6∈A,10∈B,又推得15∈A,但1+15=42,这与A为稀疏集矛盾.再证P14符合要求,当k=1时,=I14可分成两个稀疏集之并,事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1为稀疏集,且A1∪B1=I14.当k=4时,集中除整数外剩下的数组成集,可分解为下面两稀疏集的并:A2=,B2=.当k=9时,集中除正整数外剩下的数组成集,可分解为下面两稀疏集的并:A3=,B3=.15\n最后,集C=中的数的分母均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.综上,所求n的最大值为14.注:对P14的分拆方法不是唯一的.考点二 直接证明与间接证明1.(2022·山东,4)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是(  )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析 至少有一个实根的否定是没有实根,故要做的假设是“方程x3+ax+b=0没有实根”.答案 A2.(2022·四川,15)设P1,P2,…,Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,Pn的距离之和最小,则称点P为点P1,P2,…,Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是________(写出所有真命题的序号).解析 由“中位点”可知,若C在线段AB上,则线段AB上任一点都为“中位点”,C也不例外,故①正确;对于②假设在等腰Rt△ABC中,∠ACB=90°,如图所示,点P为斜边AB中点,设腰长为2,则|PA|+|PB|+|PC|=|AB|=3,而若C为“中位点”,则|CB|+|CA|=4<3,故②错;对于③,若B,C三等分AD,若设|AB|=|BC|=|CD|=1,则|BA|+|BC|+|BD|=4=|CA|+|CB|+|CD|,故③错;对于④,在梯形ABCD中,对角线AC与BD的交点为O,在梯形ABCD15\n内任取不同于点O的一点M,则在△MAC中,|MA|+|MC|>|AC|=|OA|+|OC|,同理在△MBD中,|MB|+|MD|>|BD|=|OB|+|OD|,则得,|MA|+|MB|+|MC|+|MD|>|OA|+|OB|+|OC|+|OD|,故O为梯形内唯一中位点,④是正确的.答案 ①④3.(2022·陕西,18)(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).(1)证明 法一 如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n),因为a⊥b,所以a·b=0.又因为a⊂π,n⊥π,所以a·n=0.故a·n=0,从而a⊥c.法二 如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.∵PO⊥π,a⊂π,∴直线PO⊥a.又a⊥b,b⊂平面PAO,PO∩b=P,∴a⊥平面PAO.又c⊂平面PAO.∴a⊥c.(2)解 逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.4.(2022·福建,17)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解 (1)选择②式,计算如下:sin215°+cos215°-sin15°cos15°15\n=1-sin30°=1-=.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)=sin2α+cos2α+sinαcosα+sin2α-sinαcosα-sin2α=sin2α+cos2α=.5.(2022·全国,20)设数列{an}满足a1=0且-=1.(1)求{an}的通项公式;(2)设bn=,记Sn=k,证明:Sn<1.(1)解 由题设-=1,即是公差为1的等差数列.又=1,故=n.所以an=1-.(2)证明 由(1)得bn===-,Sn=k==1-<1.考点三 数学归纳法1.(2022·江苏,23)已知集合X={1,2,3},Yn={1,2,3,…,n}(n∈N*),设Sn={(a,15\nb)|a整除b或b整除a,a∈X,b∈Yn},令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.解 (1)f(6)=13.(2)当n≥6时,f(n)=(t∈N*).下面用数学归纳法证明:①当n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,Sk+1在Sk的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+++3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有15\nf(k+1)=f(x)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.2.(2022·陕西,21)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解 由题设得,g(x)=(x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得gn(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即gk(x)=.那么,当n=k+1时,gk+1(x)=g(gk(x))===,即结论成立.由①②可知,结论对n∈N+成立.15\n(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)-(x≥0),则φ′(x)=-=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ′(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0,即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立.综上可知,a的取值范围是(-∞,1].(3)由题设知g(1)+g(2)+…+g(n)=++…+,n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n-ln(n+1).证明如下:法一 上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则<ln.下面用数学归纳法证明.①当n=1时,<ln2,结论成立.②假设当n=k时结论成立,即++…+<ln(k+1).那么,当n=k+1时,++…++<ln(k+1)+<ln(k+1)+ln=ln(k+2),15\n即结论成立.由①②可知,结论对n∈N+成立.法二 上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则ln>.故有ln2-ln1>,ln3-ln2>,……ln(n+1)-lnn>,上述各式相加可得ln(n+1)>++…+,结论得证.法三 如图,dx是由曲线y=,x=n及x轴所围成的曲边梯形的面积,而++…+是图中所示各矩形的面积和.∴++…+>dx=(1-)dx=n-ln(n+1), 结论得证.3.(2022·重庆,22)设a1=1,an+1=+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解 (1)法一 a2=2,a3=+1,再由题设条件知(an+1-1)2=(an-1)2+1.从而{(an-1)2}是首项为0公差为1的等差数列,故(an-1)2=n-1,即an=+1(n∈N*).15\n法二 a2=2,a3=+1,可写为a1=+1,a2=+1,a3=+1.因此猜想an=+1.下面用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即ak=+1.则ak+1=+1=+1=+1.这就是说,当n=k+1时结论成立.所以an=+1(n∈N*).(2)法一 设f(x)=-1,则an+1=f(an).令c=f(c),即c=-1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.当n=1时,a2=f(1)=0,a3=f(0)=-1,所以a2<<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=.法二 设f(x)=-1,则an+1=f(an).先证:0≤an≤1(n∈N*).①当n=1时,结论明显成立.假设n=k时结论成立,即0≤ak≤1.易知f(x)在(-∞,1]上为减函数,从而0=f(1)≤f(ak)≤f(0)=-1<1.即0≤ak+1≤1.这就是说,当n=k+1时结论成立,故①成立.再证:a2n<a2n+1(n∈N*).②当n=1时,a2=f(1)=0,a3=f(a2)=f(0)=-1,有a2<a3,即n=1时②成立.假设n=k时,结论成立,即a2k<a2k+1,15\n由①及f(x)在(-∞,1]上为减函数,得a2k+1=f(a2k)>f(a2k+1)=a2k+2,a2(k+1)=f(a2k+1)<f(a2k+2)=a2(k+1)+1.这就是说,当n=k+1时②成立,所以②对一切n∈N*成立.由②得a2n<-1,即(a2n+1)2<a-2a2n+2,因此a2n<.③又由①、②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n+1),即a2n+1>a2n+2,所以a2n+1>-1.解得a2n+1>.④综上,由②、③、④知存在c=使a2n<c<a2n+1对一切n∈N*成立.15

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:59:10 页数:15
价格:¥3 大小:140.71 KB
文章作者:U-336598

推荐特供

MORE