首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第十一篇《第69讲 排列与组合》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第十一篇《第69讲 排列与组合》理(含解析) 苏教版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/5
2
/5
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2013高考总复习江苏专用(理科):第十一篇《第68讲 两个基本计数原理》(基础达标演练+综合创新备选,含解析)A级 基础达标演练(时间:45分钟 满分:80分)一、填空题(每小题5分,共35分)1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单,那么不同插法的种数为________.解析 可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有AA=12种排法;若两个节目不相邻,则有A=30种排法.由分类计数原理共有12+30=42种排法(或A=42).答案 422.已知A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有________种.解析 可先排C、D、E三人共A种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A=60(种).答案 603.(2010·北京卷改编)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为________.解析 不相邻问题用插空法,8名学生先排有A种排法,产生9个空,2位老师插空有A种排法,所以最终有A·A种排法.答案 AA4.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有________.解析 若四人中包含小张和小赵两人,则不同的选派方案有AA=12(种);若四人中恰含有小张和小赵中一人,则不同的选派方案有:CAA=24(种),由分类计数原理知不同的选派方案共有36种.答案 365.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有________种.解析 若3个不同的项目投资到4个城市中的3个,每个城市一项,共A种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共CA5\n种方法,由分类计数原理共A+CA=60种方法.答案 606.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的课代表,若某女生必须担任语文课代表,则不同的选法共有________种(用数字作答).解析 由题意知,从剩余7人中选出4人担任4个学科课代表,共有A=840种.答案 8407.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案有________种.解析 将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学生有CA种分配方案,其中甲同学分配到A班共有CA+CA种方案.因此满足条件的不同方案共有CA-CA-CA=24(种).答案 24二、解答题(每小题15分,共45分)8.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?解 (1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限的点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.9.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.解 (1)46=4096;5\n(2)A=1560;(3)C+4=10;或C=10(隔板法);(4)A=2160.10.要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.解 (1)C-C=771;(2)C+CC+CC=546;(3)CC=120;(4)C-CC=672;(5)C-C=540.B级 综合创新备选(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.(2010·全国I改编)某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有________种.解析 法一 可分两种互斥情况:A类选1门,B类选2门或A类选2门,B类选1门,共有CC+CC=18+12=30(种)选法.法二 总共有C=35(种)选法,减去只选A类的C=1(种),再减去只选B类的C=4(种),共有30种选法.答案 302.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是________.解析 A-2AAA-AAA=48.答案 483.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).解析 当每个台阶上各站1人时有CA种站法,当两个人站在同一个台阶上时有CCC种站法,因此不同的站法种数有AC+CCC=210+126=336(种).答案 3364.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字).5\n解析 先从除甲、乙外的5辆车任选2辆有C种选法,连同甲、乙共4辆车,排列在一起,选从4个位置中选两个位置安排甲、乙,甲在乙前共有C种,最后安排其他两辆车共有A种方法,∴不同的调度方法为C·C·A=120种.答案 1205.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法种数是________.解析 记三名男生为甲、乙、丙,三名女生为a、b、c,先排男生,若甲在男生两端有4种排法,然后3位女生去插空,排法如甲□丙乙共有4AAA种,若男生甲排在中间,有两种排法,然后女生去插空,排法如乙□甲丙共有2AA种排法.根据分类计数原理共有4AAA+2AA=288种不同排法.答案 2886.(2011·济宁一模)将4名司机和8名售票员分配到四辆公共汽车上,每辆车上分别有1名司机和2名售票员,则可能的分配方案数为________.解析 将8名售票员平分为4组,有CCC÷A,再分配司机有A,由此得分配方案数为CCC.答案 CCC二、解答题(每小题15分,共30分)7.在m(m≥2)个不同数的排列p1p2…pm中,若1≤i<j≤m时pi>pj(即前面某数大于后面某数),则称pi与pj构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n-1)…321的逆序数为an.如排列21的逆序数a1=1,排列321的逆序数a2=3,排列4321的逆序数a3=6.(1)求a4、a5,并写出an的表达式;(2)令bn=+,证明2n<b1+b2+…+bn<2n+3,n=1,2,….解 (1)由已知条件a4=C=10,a5=C=15,则an=C=.(2)证明 bn=+=+=2+2∴b1+b2+…+bn=2n+2=2n+2,∴2n<b1+b2+…+bn<2n+3.5\n8.已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?(2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法?解 (1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回的逐个抽取测试.第2次测到第一件次品有4种抽法;第8次测到最后一件次品有3种抽法;第3至第7次抽取测到最后两件次品共有A种抽法;剩余4次抽到的是正品,共有AAA=86400种抽法.(2)检测4次可测出4件次品,不同的测试方法有A种,检测5次可测出4件次品,不同的测试方法有4AA种;检测6次测出4件次品或6件正品,则不同的测试方法共有4AA+A种.由分类计数原理,满足条件的不同的测试方法的种数为A+4AA+4AA+A=8520.5
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第十二篇 系列4选考部分《第76讲 坐标系与参数方程》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第十一篇《第73讲 离散型随机变量的均值与方差》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第十一篇《第71讲 离散型随机变量及其概率分布》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第十一篇《第66讲 几何概型 》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第八篇《第45讲 线面平行与面面平行》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第二篇 函数与基本初等函数《第10讲 对数与对数函数》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第九篇 解析几何初步《第55讲 直线与圆的位置关系》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第九篇 解析几何初步《第54讲 圆的方程》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第三篇 导数及其应用《第16讲 导数的综合应用》理(含解析) 苏教版
(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第三篇 导数及其应用《第13讲 导数的概念与运算》理(含解析) 苏教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 21:34:51
页数:5
价格:¥3
大小:55.50 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划