首页

河南省2022年中考数学总复习第七章图形的变化微专项

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

路径长最值问题常见模型结构示例应用的原理处理方法基本思路转化原则轴对称最值模型如图,定点A,B在定直线l的同侧,在定直线l上找一动点P,使PA+PB的值最小.两点之间,线段最短.作任意一定点关于直线l的对称点,然后连接对称点与另一定点,根据两点之间线段最短,得出PA+PB的最小值.①尽量减少变量,向定点、定线段、定图形“靠拢”;②使用同一变量表达所求目标.如图,定点A,B在定直线l的异侧,在定直线l上找一点P,使|PA-PB|的值最大.三角形的三边关系作任意一定点关于直线l的对称点,然后作过该对称点和另一定点的直线,交直线l于点P,根据三角形中两边之差小于第三边,可得|PA-PB|的最大值.折叠求最值模型如图,点N为定点,点M为动点,折叠图形后.①求A'B的最小值;②求点A'到BC距离的最小值.①平面内的点与圆上距离最大和最小的点均在该点与圆心连线所在的直线上;②垂线段最短.以点N为圆心、AN的长为半径作圆.①连接BN交☉N于一点,当点A'与该交点重合时,A'B取最小值;②过点N作BC的垂线,交☉N于一点,当点A'与该交点重合时,点A'到BC的距离最小.突破点1轴对称最值模型如图,在平面直角坐标系中,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)在OB上,点M是ON的中点,∠AOB=30°,要使PM+PN的值最小,则点P的坐标为    . 思路分析 定点M,N在定直线OA同侧,求PM+PN的最小值时,可作点N关于定直线OA的对称点N',再连接MN',根据两点之间线段最短,得到点P,M,N'共线时,PM+PN的值最小,据此进行求解.突破点2折叠求最值模型如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值为    . 5\n思路分析 在该问题中,先找到定点F,再以点F为圆心、CF的长为半径作圆,则点P在该圆上运动,求点P到AB距离的最小值,即是求☉F上的点到AB的最小距离,过点F作AB的垂线,交☉F于一点,当点P与该点重合时,点P到AB的距离最小,据此求解即可.1.如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,点P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是(  )                  A.BC    B.CEC.AD  D.AC2.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为    . (第2题)  (第3题)3.如图,∠AOB=45°,点P是∠AOB内一点,PO=5,点Q,R分别是OA,OB上的动点,则△PQR周长的最小值为    . 4.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC的中点,点P是对角线AC上的动点,则△PBE周长的最小值为    . (第4题)   (第5题)5.如图,在平面直角坐标系中,点A(1,5),B(3,-1),点M在x轴上运动,当AM-BM的值最大时,点M的坐标为    . 6.在平面直角坐标系中,抛物线y=12x2-2x经过点A(4,0),点C的坐标为(1,-3),点D是抛物线对称轴上一动点,当|AD-CD|的值最大时,点D的坐标为    . 7.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连接A'C,则A'C的最小值为    . (第7题)  (第8题)  5\n8.如图,CD是☉O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则PA+PB的最小值为    . 9.如图,抛物线y=-12x2+52x-2与x轴交于点A,B两点,与y轴交于点C,抛物线的顶点为D,在y轴上是否存在一点S,使得SD-SB的值最大?若存在,求出点S的坐标,并求出SD-SB的最大值;若不存在,请说明理由.参考答案高分突破微专项3 路径长最值问题例1 (32,32) 如图,作点N关于OA的对称点N',连接N'M交OA于点P,此时PM+PN的值最小.∵OA垂直平分NN',∠AOB=30°,∴ON=ON',∠N'ON=2∠AON=60°,∴△NON'是等边三角形.∵点M是ON的中点,点N(3,0),∴N'M⊥ON,ON=3,OM=12ON=32,∴PM=OM·tan∠AON=32×33=32,∴P(32,32).即要使PM+PN的值最小,点P的坐标为(32,32).例2 65 当点E在BC上运动时,PF的长固定不变,即PF=CF=2.故点P在以点F为圆心、以2为半径的圆上运动.如图,过点F作FH⊥AB交☉F于点P,垂足为点H,此时PH最短,则△AFH∽△ABC,∴FHBC=FAAB.由已知得AF=4,AB=10,∴FH8=410,即FH=165,∴PH=FH-FP=165-2=65.故点P到AB距离的最小值为65.强化训练1.B ∵AB=AC,AD是中线,∴AD⊥BC,∴点B,C关于直线AD对称.连接CE交AD于点F,当点P与点F重合时,BP+EP的值最小,最小值为CE的长.故选B.2.(3,43) ∵点B的坐标为(3,4),∴OA=3,OC=4,C(0,4).∵点D是OA的中点,∴OD=AD=32.如图,作点D关于直线AB的对称点F,则AF=AD=32,故点F的坐标为(92,0).根据轴对称的性质,可知直线FC与AB的交点就是使得△CDE的周长最小的点E.利用待定系数法可得直线CF的解析式为y=-89x+4,当x=3时,y=43,故点E的坐标为(3,43).5\n3.52 如图,分别作点P关于OA,OB的对称点M,N,连接OM,ON,MN,MN交OA,OB于点Q,R,此时△PQR周长最小,为MN的长.由轴对称的性质可得,OM=ON=OP=5,∠MOA=∠POA,∠NOB=∠POB,则∠MON=2∠AOB=2×45°=90°.在Rt△MON中,MN=OM2+ON2=52,即△PQR周长的最小值等于52.4.3+1 如图,连接DE,交AC于点F,连接PD,易得PB=PD,∵PD+PE≥DE,∴当点P与点F重合时,PD+PE的值最小,且最小值为DE的长,易得DE=3,故PB+PE的最小值为3,易得BE=1,故△PBE周长的最小值为3+1.5.(72,0) 如图,作点B关于x轴的对称点B',连接AB'并延长与x轴交于点N,此时AN-BN=AN-B'N=AB',MA-MB=MA-MB'≤AB'.∵点B'和点B(3,-1)关于x轴对称,∴B'(3,1).设直线AB'的解析式为y=kx+b,将A(1,5),B'(3,1)分别代入,得k+b=5,3k+b=1,解得k=-2,b=7,故直线AB'的解析式为y=-2x+7,令y=0,解得x=72,∴当AM-BM的值最大时,点M的坐标为(72,0).6.(2,-6) 易知抛物线的对称轴为直线x=2.如图,作点C关于直线x=2的对称点C'(3,-3),作直线AC',与直线x=2交于点D.设直线AC'的解析式为y=kx+b,将A(4,0),C'(3,-3)分别代入,得4k+b=0,3k+b=-3,解得k=3,b=-12,故直线AC'的解析式为y=3x-12,当x=2时,y=-6,故点D的坐标为(2,-6).5\n7.7-1 易知MA'是定值,且MA'=1,A'C的长度取最小值时,点A'在MC上.过点M作MF⊥DC交CD的延长线于点F,∵在边长为2的菱形ABCD中,点M为AD的中点,∠A=60°,∴CD=AD=2,DM=12AD=1,∠FDM=60°,∴FD=DM·cos60°=12,FM=DM·sin60°=32,∴FC=FD+DC=52,∴MC=FM2+FC2=(32)2+(52)2=7,∴A'C=MC-MA'=7-1.故A'C的最小值为7-1.8.2 如图,作点A关于直线CD的对称点M,则点M在☉O上,连接MB交CD于点P,则此时PA+PB取最小值,为BM.连接OB,OM.∵∠ACD=20°,点B为弧AD的中点,∴∠BOD=20°,∠DOM=40°,∴∠BOM=60°.∵OB=OM,∴△BOM是等边三角形,∴BM=OB=12CD=2,即PA+PB的最小值为2.9.如图,作直线BD交y轴于点S,此时SD-SB有最大值,最大值等于BD的长.∵y=-12x2+52x-2=-12(x-52)2+98,∴点D的坐标为(52,98).将y=0代入y=-12x2+52x-2,得-12x2+52x-2=0,解得x1=1,x2=4,∴点B的坐标为(1,0),点A的坐标为(4,0).设直线BD的解析式为y=kx+b,将B(1,0),D(52,98)分别代入,得k+b=0,52k+b=98,解得k=34,b=-34,故直线BD的解析式为y=34x-34,∴点S的坐标为(0,-34).过点D作DE⊥x轴于点E,则BE=32,DE=98.在Rt△BDE中,BD=BE2+DE2=(32)2+(98)2=158.故在y轴上存在一点S,使得SD-SB的值最大,最大值为158,此时点S的坐标为(0,-34).5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:14:37 页数:5
价格:¥3 大小:276.30 KB
文章作者:U-336598

推荐特供

MORE