首页

河南省2022年中考数学总复习第七章图形的变化第三节图形的对称平移与旋转好题随堂演练

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

图形的对称、平移与旋转好题随堂演练1.(2022·资阳)下列图形具有两条对称轴的是(  )A.等边三角形B.平行四边形C.矩形D.正方形2.(2022·德州)下列图形既是轴对称图形又是中心对称的图形是(  )3.(2022·广州)如图所示的五角星是轴对称图形,它的对称轴共有( )A.1条B.3条C.5条D.无数条4.(2022·泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为(  )A.(2.8,3.6)B.(-2.8,-3.6)C.(3.8,2.6)D.(-3.8,-2.6)5.(2022·江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为__________.4\n6.(2022·新野县一模)如图①,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图①中,PM与PN的数量关系是__________________,位置关系是__________________.(2)探究证明:将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.参考答案1.C 2.B 3.C 4.A 5.3 6.解:(1)PM=PN,PM⊥PN.【解法提示】如解图①,延长AE交BD于O.第6题解图①4\n∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN.(2)△PMN为等腰直角三角形,理由如下:如解图②,设AE交BC于O.第6题解图②∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN,∠MGE+∠BHA=180°,4\n∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN,∴△PMN为等腰直角三角形.(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D三点共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值为×3×3=.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:14:35 页数:4
价格:¥3 大小:131.57 KB
文章作者:U-336598

推荐特供

MORE