(挑战2022)中考数学 压轴题第六版精选 1.4 因动点产生的平行四边形问题
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1.4因动点产生的平行四边形问题例12022年福州市中考第21题如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图2动感体验请打开几何画板文件名“12福州21”,拖动左图中的点P运动,可以体验到,PQ的中点M的运动路径是一条线段.拖动右图中的点Q运动,可以体验到,当PQ//AB时,四边形PDBQ为菱形.请打开超级画板文件名“12福州21”,拖动点Q向上运动,可以体验到,PQ的中点M的运动路径是一条线段.点击动画按钮的左部,Q的速度变成1.07,可以体验到,当PQ//AB时,四边形PDBQ为菱形.点击动画按钮的中部,Q的速度变成1.思路点拨1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.19\n2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径.满分解答(1)QB=8-2t,PD=.(2)如图3,作∠ABC的平分线交CA于P,过点P作PQ//AB交BC于Q,那么四边形PDBQ是菱形.过点P作PE⊥AB,垂足为E,那么BE=BC=8.在Rt△ABC中,AC=6,BC=8,所以AB=10.图3在Rt△APE中,,所以. 当PQ//AB时,,即.解得.所以点Q的运动速度为.(3)以C为原点建立直角坐标系.如图4,当t=0时,PQ的中点就是AC的中点E(3,0).如图5,当t=4时,PQ的中点就是PB的中点F(1,4).直线EF的解析式是y=-2x+6.如图6,PQ的中点M的坐标可以表示为(,t).经验证,点M(,t)在直线EF上.所以PQ的中点M的运动路径长就是线段EF的长,EF=.图4图5图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t=2时,PQ的中点为(2,2).设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),19\n得解得a=0,b=-2,c=6.所以点M的运动路径的解析式为y=-2x+6.例22022年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0)、C(3,0)、D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.图1动感体验请打开几何画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,△ACG的面积最大.观察右图,我们构造了和△CEQ中心对称的△FQE和△ECH′,可以体验到,线段EQ的垂直平分线可以经过点C和F,线段CE的垂直平分线可以经过点Q和H′,因此以C、Q、E、H为顶点的菱形有2个.请打开超级画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,即t=2,△ACG的面积取得最大值1.观察CQ,EQ,EC的值,发现以C、Q、E、H为顶点的菱形有2个.点击动画按钮的左部和中部,可得菱形的两种准确位置。思路点拨19\n1.把△ACG分割成以GE为公共底边的两个三角形,高的和等于AD.2.用含有t的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C、Q、E、H为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在.满分解答(1)A(1,4).因为抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,代入点C(3,0),可得a=-1.所以抛物线的解析式为y=-(x-1)2+4=-x2+2x+3.(2)因为PE//BC,所以.因此.所以点E的横坐标为.将代入抛物线的解析式,y=-(x-1)2+4=.所以点G的纵坐标为.于是得到.因此.所以当t=1时,△ACG面积的最大值为1.(3)或.考点伸展第(3)题的解题思路是这样的:因为FE//QC,FE=QC,所以四边形FECQ是平行四边形.再构造点F关于PE轴对称的点H′,那么四边形EH′CQ也是平行四边形.再根据FQ=CQ列关于t的方程,检验四边形FECQ是否为菱形,根据EQ=CQ列关于t的方程,检验四边形EH′CQ是否为菱形.,,,.如图2,当FQ=CQ时,FQ2=CQ2,因此.整理,得.解得,(舍去).如图3,当EQ=CQ时,EQ2=CQ2,因此.整理,得..所以,(舍去).19\n图2图3例32022年上海市中考第24题已知平面直角坐标系xOy(如图1),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.图1动感体验请打开几何画板文件名“11上海24”,拖动点B在y轴上点A下方运动,四边形ABCD保持菱形的形状,可以体验到,菱形的顶点C有一次机会落在抛物线上.思路点拨19\n1.本题最大的障碍是没有图形,准确画出两条直线是基本要求,抛物线可以不画出来,但是对抛物线的位置要心中有数.2.根据MO=MA确定点M在OA的垂直平分线上,并且求得点M的坐标,是整个题目成败的一个决定性步骤.3.第(3)题求点C的坐标,先根据菱形的边长、直线的斜率,用待定字母m表示点C的坐标,再代入抛物线的解析式求待定的字母m.满分解答(1)当x=0时,,所以点A的坐标为(0,3),OA=3.如图2,因为MO=MA,所以点M在OA的垂直平分线上,点M的纵坐标为.将代入,得x=1.所以点M的坐标为.因此.(2)因为抛物线y=x2+bx+c经过A(0,3)、M,所以解得,.所以二次函数的解析式为.(3)如图3,设四边形ABCD为菱形,过点A作AE⊥CD,垂足为E.在Rt△ADE中,设AE=4m,DE=3m,那么AD=5m.因此点C的坐标可以表示为(4m,3-2m).将点C(4m,3-2m)代入,得.解得或者m=0(舍去).因此点C的坐标为(2,2).图2图3考点伸展如果第(3)题中,把“四边形ABCD是菱形”改为“以A、B、C、D为顶点的四边形是菱形”19\n,那么还存在另一种情况:如图4,点C的坐标为.图4例42022年江西省中考第24题将抛物线c1:沿x轴翻折,得到抛物线c2,如图1所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.19\n图1动感体验请打开几何画板文件名“11江西24”,拖动点M向左平移,可以体验到,四边形ANEM可以成为矩形,此时B、D重合在原点.观察B、D的位置关系,可以体验到,B、D是线段AE的三等分点,存在两种情况.思路点拨1.把A、B、D、E、M、N六个点起始位置的坐标罗列出来,用m的式子把这六个点平移过程中的坐标罗列出来.2.B、D是线段AE的三等分点,分两种情况讨论,按照AB与AE的大小写出等量关系列关于m的方程.3.根据矩形的对角线相等列方程.满分解答(1)抛物线c2的表达式为.(2)抛物线c1:与x轴的两个交点为(-1,0)、(1,0),顶点为.抛物线c2:与x轴的两个交点也为(-1,0)、(1,0),顶点为.抛物线c1向左平移m个单位长度后,顶点M的坐标为,与x轴的两个交点为、,AB=2.抛物线c2向右平移m个单位长度后,顶点N的坐标为,与x轴的两个交点为、.所以AE=(1+m)-(-1-m)=2(1+m).①B、D是线段AE的三等分点,存在两种情况:情形一,如图2,B在D的左侧,此时,AE=6.所以2(1+m)=6.解得m=2.19\n情形二,如图3,B在D的右侧,此时,AE=3.所以2(1+m)=3.解得.图2图3图4②如果以点A、N、E、M为顶点的四边形是矩形,那么AE=MN=2OM.而OM2=m2+3,所以4(1+m)2=4(m2+3).解得m=1(如图4).考点伸展第(2)题②,探求矩形ANEM,也可以用几何说理的方法:在等腰三角形ABM中,因为AB=2,AB边上的高为,所以△ABM是等边三角形.同理△DEN是等边三角形.当四边形ANEM是矩形时,B、D两点重合.因为起始位置时BD=2,所以平移的距离m=1.例52022年河南省中考第23题如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.19\n图1图2动感体验请打开几何画板文件名“10河南23”,拖动点M在第三象限内抛物线上运动,观察S随m变化的图象,可以体验到,当D是AB的中点时,S取得最大值.拖动点Q在直线y=-x上运动,可以体验到,以点P、Q、B、O为顶点的四边形有3个时刻可以成为平行四边形,双击按钮可以准确显示.思路点拨1.求抛物线的解析式,设交点式比较简便.2.把△MAB分割为共底MD的两个三角形,高的和为定值OA.3.当PQ与OB平行且相等时,以点P、Q、B、O为顶点的四边形是平行四边形,按照P、Q的上下位置关系,分两种情况列方程.满分解答(1)因为抛物线与x轴交于A(-4,0)、C(2,0)两点,设y=a(x+4)(x-2).代入点B(0,-4),求得.所以抛物线的解析式为.(2)如图2,直线AB的解析式为y=-x-4.过点M作x轴的垂线交AB于D,那么.所以.因此当时,S取得最大值,最大值为4.(3)如果以点P、Q、B、O为顶点的四边形是平行四边形,那么PQ//OB,PQ=OB=4.设点Q的坐标为,点P的坐标为.19\n①当点P在点Q上方时,.解得.此时点Q的坐标为(如图3),或(如图4).②当点Q在点P上方时,.解得或(与点O重合,舍去).此时点Q的坐标为(-4,4)(如图5).图3图4图5考点伸展在本题情境下,以点P、Q、B、O为顶点的四边形能成为直角梯形吗?如图6,Q(2,-2);如图7,Q(-2,2);如图8,Q(4,-4).图6图7图8例62022年山西省中考第26题19\n在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1图2动感体验请打开几何画板文件名“10山西26”,拖动点M可以在直线DE上运动.分别双击按钮“DO、DM为邻边”、“DO、DN为邻边”和“DO为对角线”可以准确显示菱形.思路点拨1.第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础.2.讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边.满分解答(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.在Rt△ABH中,AH=3,BA=,所以BH=6.因此点B的坐标为(3,6).(2)因为OE=2EB,所以,,E(2,4).设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得解得,19\n.所以直线DE的解析式为.(3)由,知直线DE与x轴交于点F(10,0),OF=10,DF=.①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,),点N的坐标为(-5,).②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.由△NPO∽△DOF,得,即.解得,.此时点N的坐标为.图3图4考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.图5图619\n例72022年福州市中考第21题如图1,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.图1动感体验请打开几何画板文件名“09福州21”,拖动点E在BC上运动,观察面积随x变化的图象,可以体验到,当E是BC的中点时,平行四边形EFPQ的面积最大,此时四边形EFPQ是菱形.拖动点M在BC的垂直平分线上运动可以改变⊙E的大小,可以体验到,⊙E与平行四边形EFPQ四条边交点的总个数可能为2,4,6,3,0.思路点拨1.如何用含有x的式子表示平行四边形的边PQ,第(1)题作了暗示.2.通过计算,求出平行四边形面积最大时的x值,准确、规范地画出此时的图形是解第(3)题的关键,此时点E是BC的中点,图形充满了特殊性.3.画出两个同心圆可以帮助探究、理解第(3)题:过点H的圆,过点C的圆.19\n满分解答(1)BE、PE、BF三条线段中任选两条.(2)如图2,在Rt△CEH中,∠C=60°,EC=x,所以.因为PQ=FE=BE=4-x,所以.(3)因为,所以当x=2时,平行四边形EFPQ的面积最大.此时E、F、P分别为△ABC的三边BC、AB、AC的中点,且C、Q重合,四边形EFPQ是边长为2的菱形(如图3).图2图3过点E点作ED⊥FP于D,则ED=EH=.如图4,当⊙E与平行四边形EFPQ的四条边交点的总个数是2个时,0<r<;如图5,当⊙E与平行四边形EFPQ的四条边交点的总个数是4个时,r=;如图6,当⊙E与平行四边形EFPQ的四条边交点的总个数是6个时,<r<2;如图7,当⊙E与平行四边形EFPQ的四条边交点的总个数是3个时,r=2时;如图8,当⊙E与平行四边形EFPQ的四条边交点的总个数是0个时,r>2时.19\n图4图5图6图7图8考点伸展本题中E是边BC上的动点,设EC=x,如果没有限定0<x≤2,那么平行四边形EFPQ的面积是如何随x的变化而变化的?事实上,当x>2时,点P就不存在了,平行四边形EFPQ也就不存在了.因此平行四边形EFPQ的面积随x的增大而增大.例82022年江西省中考第24题如图1,抛物线与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;19\n(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF//DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系.图1动感体验请打开几何画板文件名“09江西24”,拖动点P在BC上运动,可以体验到,四边形PEDF可以成为平行四边形.观察△BCF的形状和S随m变化的图象,可以体验到,S是m的二次函数,当P是BC的中点时,S取得最大值.思路点拨1.数形结合,用函数的解析式表示图象上点的坐标,用点的坐标表示线段的长.2.当四边形PEDF为平行四边形时,根据DE=FP列关于m的方程.3.把△BCF分割为两个共底FP的三角形,高的和等于OB.满分解答(1)A(-1,0),B(3,0),C(0,3).抛物线的对称轴是x=1.(2)①直线BC的解析式为y=-x+3.把x=1代入y=-x+3,得y=2.所以点E的坐标为(1,2).把x=1代入,得y=4.所以点D的坐标为(1,4).因此DE=2.因为PF//DE,点P的横坐标为m,设点P的坐标为,点F的坐标为,因此.19\n当四边形PEDF是平行四边形时,DE=FP.于是得到.解得,(与点E重合,舍去).因此,当m=2时,四边形PEDF是平行四边形时.②设直线PF与x轴交于点M,那么OM+BM=OB=3.因此.m的变化范围是0≤m≤3.图2图3考点伸展在本题条件下,四边形PEDF可能是等腰梯形吗?如果可能,求m的值;如果不可能,请说明理由.如图4,如果四边形PEDF是等腰梯形,那么DG=EH,因此.于是.解得(与点CE重合,舍去),(与点E重合,舍去).因此四边形PEDF不可能成为等腰梯形.19\n图419
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)