首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
(挑战2022)中考数学 压轴题第六版精选 1.5 因动点产生的梯形问题
(挑战2022)中考数学 压轴题第六版精选 1.5 因动点产生的梯形问题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/16
2
/16
剩余14页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
1.5因动点产生的梯形问题例12022年上海市松江区中考模拟第24题已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y轴的正半轴上,且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y=3x-3交于点E,若,求四边形BDEP的面积.图1动感体验请打开几何画板文件名“12松江24”,拖动点P向右运动,可以体验到,D、P间的垂直距离等于7保持不变,∠DPE与∠PDH保持相等.请打开超级画板文件名“12松江24”,拖动点P向右运动,可以体验到,D、P间的垂直距离等于7保持不变,∠DPE与∠PDH保持相等,,四边形BDEP的面积为24.思路点拨1.这道题的最大障碍是画图,A、B、C、D四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了.2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D、P两点间的垂直距离等于7.3.已知∠DPE的正切值中的7的几何意义就是D、P两点间的垂直距离等于7,那么点P向右平移到直线x=3时,就停止平移.满分解答(1)直线y=3x-3与x轴的交点为A(1,0),与y轴的交点为B(0,-3).将A(1,0)、B(0,-3)分别代入y=ax2+2x+c,得解得所以抛物线的表达式为y=x2+2x-3.对称轴为直线x=-1,顶点为(-1,-4).(2)①如图2,点B关于直线l的对称点C的坐标为(-2,-3).16\n因为CD//AB,设直线CD的解析式为y=3x+b,代入点C(-2,-3),可得b=3.所以点D的坐标为(0,3).②过点P作PH⊥y轴,垂足为H,那么∠PDH=∠DPE.由,得.而DH=7,所以PH=3.因此点E的坐标为(3,6).所以.图2图3考点伸展第(2)①用几何法求点D的坐标更简便:因为CD//AB,所以∠CDB=∠ABO.因此.所以BD=3BC=6,OD=3.因此D(0,3).例22022年衢州市中考第24题16\n如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.动感体验请打开几何画板文件名“12衢州24”,拖动点P在线段OC上运动,可以体验到,在AB的左侧,存在等腰梯形ABPM.拖动点A′在线段AC上运动,可以体验到,Rt△A′OB′、Rt△COD、Rt△A′HG、Rt△OEK、Rt△OFG和Rt△EHK的两条直角边的比都为1∶2.请打开超级画板文件名“12衢州24”,拖动点P在线段OC上运动,可以体验到,在AB的左侧,存在AM=BP.拖动点A′在线段AC上运动,发现S最大值为0.375.思路点拨1.如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段.2.△AOB与△COD重叠部分的形状是四边形EFGH,可以通过割补得到,即△OFG减去△OEH.3.求△OEH的面积时,如果构造底边OH上的高EK,那么Rt△EHK的直角边的比为1∶2.4.设点A′移动的水平距离为m,那么所有的直角三角形的直角边都可以用m表示.满分解答(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得解得,,.所以.16\n(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-yM′=yP′-yB.直线OC的解析式为,设点P的坐标为,那么.解方程,得,.x=2的几何意义是P与C重合,此时梯形不存在.所以.图2图3(3)如图3,△AOB与△COD重叠部分的形状是四边形EFGH,作EK⊥OD于K.设点A′移动的水平距离为m,那么OG=1+m,GB′=m.在Rt△OFG中,.所以.在Rt△A′HG中,A′G=2-m,所以.所以.在Rt△OEK中,OK=2EK;在Rt△EHK中,EK=2HK;所以OK=4HK.因此.所以.所以.于是.因为0<m<1,所以当时,S取得最大值,最大值为.考点伸展第(3)题也可以这样来解:设点A′的横坐标为a.由直线AC:y=-x+3,可得A′(a,-a+3).由直线OC:,可得.由直线OA:y=2x及A′(a,-a+3),可得直线O′A′:y=2x-3a+3,.16\n由直线OC和直线O′A′可求得交点E(2a-2,a-1).由E、F、G、H4个点的坐标,可得例32022年北京市海淀区中考模拟第24题已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.备用图动感体验请打开几何画板文件名“11海淀24”,拖动点P在OA上运动,观察PQ的长随点P变化的跟踪点,可以体验到,当P运动到OA的中点时,PQ的长取得最大值.答案(1)抛物线的解析式为y=x2-2x,直线的解析式为y=2x.(2)如图1,当P为OA的中点时,的长度取得最大值为4.(3)如图2,如果四边形AOMN是梯形,那么点N的坐标为(3,3),梯形AOMN的面积为9.16\n图1图2例42022年义乌市中考第24题已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.16\n图1图2动感体验请打开几何画板文件名“11义乌24”,拖动点M从P向O运动,可以体验到,M在到达PO的中点前,重叠部分是三角形;经过中点以后,重叠部分是梯形.思路点拨1.第(2)题可以根据对边相等列方程,也可以根据对角线相等列方程,但是方程的解都要排除平行四边形的情况.2.第(3)题重叠部分的形状分为三角形和梯形两个阶段,临界点是PO的中点.满分解答(1)设抛物线的解析式为,代入A(2,0)、C(0,12)两点,得解得所以二次函数的解析式为,顶点P的坐标为(4,-4).(2)由,知点B的坐标为(6,0).假设在等腰梯形OPBD,那么DP=OB=6.设点D的坐标为(x,2x).由两点间的距离公式,得.解得或x=-2.如图3,当x=-2时,四边形ODPB是平行四边形.所以,当点D的坐标为(,)时,四边形OPBD为等腰梯形.图3图4图516\n(3)设△PMN与△POB的高分别为PH、PG.在Rt△PMH中,,.所以.在Rt△PNH中,,.所以.①如图4,当0<t≤2时,重叠部分的面积等于△PMN的面积.此时.②如图5,当2<t<4时,重叠部分是梯形,面积等于△PMN的面积减去△P′DC的面积.由于,所以.此时.考点伸展第(2)题最好的解题策略就是拿起尺、规画图:方法一,按照对角线相等画圆.以P为圆心,OB长为半径画圆,与直线y=2x有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.方法二,按照对边相等画圆.以B为圆心,OP长为半径画圆,与直线y=2x有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.16\n例52022年杭州市中考第24题如图1,在平面直角坐标系xOy中,抛物线的解析式是y=,点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.(1)写出点M的坐标;(2)当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1∶2时,求t的值.图1动感体验请打开几何画板文件名“10杭州24”,拖动点Q在抛物线上运动,从t随x变化的图象可以看到,t是x的二次函数,抛物线的开口向下.还可以感受到,PQ∶CM=1∶2只有一种情况,此时Q在y轴上;CM∶PQ=1∶2有两种情况.思路点拨1.第(1)题求点M的坐标以后,Rt△OCM的两条直角边的比为1∶2,这是本题的基本背景图.2.第(2)题中,不变的关系是由平行得到的等角的正切值相等,根据数形结合,列关于t与x的比例式,从而得到t关于x的函数关系.3.探求自变量x的取值范围,要考虑梯形不存在的情况,排除平行四边形的情况.4.梯形的两底的长度之比为1∶2,要分两种情况讨论.把两底的长度比转化为QH与MO的长度比.满分解答(1)因为AB=OC=4,A、B关于y轴对称,所以点A的横坐标为2.将x=2代入y=,得y=2.所以点M的坐标为(0,2).16\n(2)①如图2,过点Q作QH^x轴,设垂足为H,则HQ=y,HP=x–t.因为CM//PQ,所以∠QPH=∠MCO.因此tan∠QPH=tan∠MCO,即.所以.整理,得.如图3,当P与C重合时,,解方程,得.如图4,当Q与B或A重合时,四边形为平行四边形,此时,x=±2.因此自变量x的取值范围是,且x¹±2的所有实数.图2图3图4②因为sin∠QPH=sin∠MCO,所以,即.当时,.解方程,得(如图5).此时.当时,.解方程,得.如图6,当时,;如图6,当时,.图5图6图7考点伸展本题情境下,以Q为圆心、QM为半径的动圆与x轴有怎样的位置关系呢?16\n设点Q的坐标为,那么.而点Q到x轴的距离为.因此圆Q的半径QM等于圆心Q到x轴的距离,圆Q与x轴相切.例62022年上海市奉贤区中考模拟第24题已知,矩形OABC在平面直角坐标系中位置如图1所示,点A的坐标为(4,0),点C的坐标为,直线与边BC相交于点D.(1)求点D的坐标;(2)抛物线经过点A、D、O,求此抛物线的表达式;(3)在这个抛物线上是否存在点M,使O、D、A、M16\n为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“10奉贤24”,分别双击按钮“MO//AD”、“MA//OD”和“MD//OA”,可以体验到,在“MO//AD”和“MA//OD”两种情况下,根据两直线平行,内错角相等,可以判定直角三角形相似;在“MD//OA”情况下,根据对称性可以直接得到点M的坐标.思路点拨1.用待定系数法求抛物线的解析式,设交点式比较简便.2.过△AOD的三个顶点分别画对边的平行线与抛物线相交,可以确定存在三个梯形.3.用抛物线的解析式可以表示点M的坐标.满分解答(1)因为BC//x轴,点D在BC上,C(0,-2),所以点D的纵坐标为-2.把y=-2代入,求得x=3.所以点D的坐标为(3,-2).(2)由于抛物线与x轴交于点O、A(4,0),设抛物线的解析式为y=ax(x-4),代入D(3,-2),得.所求的二次函数解析式为.(3)设点M的坐标为.①如图2,当OM//DA时,作MN⊥x轴,DQ⊥x轴,垂足分别为N、Q.由tan∠MON=tan∠DAQ,得.因为x=0时点M与O重合,因此,解得x=7.此时点M的坐标为(7,14).16\n②如图3,当AM//OD时,由tan∠MAN=tan∠DOQ,得.因为x=4时点M与A重合,因此,解得x=-1.此时点M的坐标为.③如图4,当DM//OA时,点M与点D关于抛物线的对称轴对称,此时点M的坐标为(1,-2).图2图3图4考点伸展第(3)题的①、②用几何法进行计算,依据是两直线平行,内错角的正切相等.如果用代数法进行,计算过程比较麻烦.以①为例,先求出直线AD的解析式,再求出直线OM的解析式,最后解由直线OM和抛物线的解析式组成的二元二次方程组.例72022年广州市中考第25题16\n如图1,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使以A、B、C、D为顶点的四边形为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“09广州25”,可以看到,△ABC是以AB为斜边的直角三角形,AB是它的外接圆直径,拖动点M在y轴上运动,可以体验到,过M的直线与圆相切或者相交时有公共点.在抛物线上有两个符合条件的点D,使以A、B、C、D为顶点的四边形为直角梯形.思路点拨1.根据△ABC的面积和AB边上的高确定AB的长,这样就可以把两个点的坐标用一个字母表示.2.数形结合,根据点A、B、C的坐标确定OA、OB、OC间的数量关系,得到△AOC∽△COB,从而得到△ABC是以AB为斜边的直角三角形,AB是它的外接圆直径,再根据对称性写出m的取值范围.3.根据直角梯形的定义,很容易确定符合条件的点D有两个,但是求点D的坐标比较麻烦,根据等角的正切相等列方程相对简单一些.满分解答(1)因为OC=1,△ABC的面积为,所以AB=.设点A的坐标为(a,0),那么点B的坐标为(a+,0).16\n设抛物线的解析式为,代入点C(0,-1),得.解得或.因为二次函数的解析式中,,所以抛物线的对称轴在y轴右侧.因此点A、B的坐标分别为,.所以抛物线的解析式为.(2)如图2,因为,,所以.因此△AOC∽△COB.所以△ABC是以AB为斜边的直角三角形,外接圆的直径为AB.因此m的取值范围是≤m≤.图2图3图4(3)设点D的坐标为.①如图3,过点A作BC的平行线交抛物线于D,过点D作DE⊥x轴于E.因为,所以.因此.解得.此时点D的坐标为.过点B作AC的平行线交抛物线于D,过点D作DF⊥x轴于F.因为,所以.因此.解得.此时点D的坐标为.综上所述,当D的坐标为或时,以A、B、C、D为顶点的四边形为直角梯形.16\n考点伸展第(3)题可以用代数的方法这样解:例如图3,先求得直线BC为,再根据AD//BC求得直线AD为,由直线AD和抛物线的解析式组成的方程组,得到点D的坐标.16
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
(挑战2022)中考数学 压轴题第六版精选 2.2 由面积产生的函数关系问题
(挑战2022)中考数学 压轴题第六版精选 2.1 由比例线段产生的函数关系问题
(挑战2022)中考数学 压轴题第六版精选 1.8 因动点产生的线段和差问题
(挑战2022)中考数学 压轴题第六版精选 1.7 因动点产生的相切问题
(挑战2022)中考数学 压轴题第六版精选 1.6 因动点产生的面积问题
(挑战2022)中考数学 压轴题第六版精选 1.4 因动点产生的平行四边形问题
(挑战2022)中考数学 压轴题第六版精选 1.3 因动点产生的直角三角形问题
(挑战2022)中考数学 压轴题第六版精选 1.2 因动点产生的等腰三角形问题
(挑战2022)中考数学 压轴题第六版精选 1.1 因动点产生的相似三角形问题
2022中考数学 压轴题函数梯形问题精选解析(二)
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:09:26
页数:16
价格:¥3
大小:417.73 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划