首页

2025年高考数学一轮讲义第2章 第5课时 函数性质的综合应用

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第5课时 函数性质的综合应用考点一 函数的奇偶性与单调性[典例1] (1)(2024·浙江金华期中)已知f(x)是定义在R上的奇函数,且对任意x1,x2∈R,当x1<x2时,都有f(x1)-f(x2)<x1-x2,则关于x的不等式f(x2-1)+f(-2x-2)<x2-2x-3的解集为(  )A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)(2)(多选)(2023·四省联考)已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且f(x),g(x)在(-∞,0]上均单调递减,则(  )A.f(f(1))<f(f(2)) B.f(g(1))<f(g(2))C.g(f(1))<g(f(2)) D.g(g(1))<g(g(2))[听课记录]                                                                                                     1.比较函数值的大小问题,可以利用奇偶性,把不在同一单调区间上的两个或多个自变量转化到同一单调区间上,再利用函数的单调性比较大小.2.对于抽象函数不等式的求解,先将不等式变形为f(x1)>f(x2)的形式,再结合单调性,脱去“f”变成常规不等式,转化为x1<x2(或x1>x2)求解.[跟进训练]1.(1)(2020·新高考Ⅰ卷)若定义在R的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是(  )A.[-1,1]∪[3,+∞) B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞) D.[-1,0]∪[1,3](2)(多选)定义在R上的奇函数f(x)为减函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,则下列不等式中成立的是(  )A.f(b)-f(-a)<g(a)-g(-b)4/4 B.f(b)-f(-a)>g(a)-g(-b)C.f(a)+f(-b)<g(b)-g(-a)D.f(a)+f(-b)>g(b)-g(-a)[听课记录]                                                                                                    考点二 函数的奇偶性与周期性[典例2] (1)(2021·新高考Ⅱ卷)已知函数f(x)的定义域为R,且f(x+2)是偶函数,f(2x+1)是奇函数,则(  )A.f-12=0   B.f(-1)=0C.f(2)=0 D.f(4)=0(2)若定义在R上的偶函数f(x)满足f(2-x)=-f(x),且当1≤x≤2时,f(x)=x-1,则f72等于(  )A.52  B.32C.12  D.-12[听课记录]                                                                                                     周期性与奇偶性结合的问题多考查求函数值、比较大小等,常先利用奇偶性推导出周期性,然后将所求函数值的自变量转化到已知解析式的函数定义域内,或已知单调性的区间内求解.[跟进训练]2.已知函数f(x)是定义在R上的奇函数,且f(x+1)=f(-x+1),当0<x≤1时,f(x)=x2-2x+3,则f132等于(  )A.-74  B.74 C.-94  D.94考点三 函数的奇偶性与对称性[典例3] (1)已知函数f(x)是定义在R上的奇函数,函数g(x)=x-2f(x)的图象关于直线x=2对称,若f(-1)=-1,则g(3)=(  )4/4 A.5  B.1 C.-1  D.-5(2)定义在R上的奇函数f(x),其图象关于点(-2,0)对称,且f(x)在[0,2)上单调递增,则(  )A.f(11)<f(12)<f(21)B.f(21)<f(12)<f(11)C.f(11)<f(21)<f(12)D.f(21)<f(11)<f(12)[听课记录]                                                                                                     由函数的奇偶性与对称性可求函数的周期,常用于化简求值、比较大小等.[跟进训练]3.已知函数f(x)是R上的偶函数,且f(x)的图象关于点(1,0)对称,当x∈[0,1]时,f(x)=2-2x,则f(0)+f(1)+f(2)+…+f(2024)的值为(  )A.-2  B.-1 C.0  D.1考点四 函数的对称性与周期性[典例4] (1)(2024·山东济南期末)已知函数f(x)的定义域为R,f(x+2)为奇函数,f(2x+1)为偶函数,则函数f(x)的周期是(  )A.2 B.3C.4 D.5(2)(2023·广东广州一模)已知函数f(x)的定义域为R,且f(x+1)+f(x-1)=2,f(x+2)为偶函数,若f(0)=2,则=(  )A.116 B.115C.114 D.113[听课记录]                                                                 4/4                                     函数的周期性与对称性的关系(1)如果f(x)的图象关于点(a,0)对称,且关于直线x=b(a≠b)对称,则函数f(x)的周期T=4|a-b|.(类比y=sinx的图象)(2)如果f(x)的图象关于点(a,0)对称,且关于点(b,0)(a≠b)对称,则函数f(x)的周期T=2|a-b|.(类比y=sinx的图象)(3)若函数f(x)的图象关于直线x=a与直线x=b(a≠b)对称,那么函数的周期T=2|a-b|.(类比y=sinx的图象)[跟进训练]4.(1)(2023·天津和平区一模)已知f(x)是定义在R上的函数,且对任意x∈R都有f(x+2)=f(2-x)+4f(2),若函数y=f(x+1)的图象关于点(-1,0)对称,则f(2024)=(  )A.6 B.3C.0 D.-3(2)(2021·全国甲卷)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f92=(  )A.-94 B.-32C.74 D.524/4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-10-01 14:40:01 页数:4
价格:¥1 大小:115.91 KB
文章作者:180****8757

推荐特供

MORE