2024年高考数学一轮复习(新高考版) 第2章 §2.5 函数性质的综合应用[培优课]
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/48
2/48
3/48
4/48
剩余44页未读,查看更多内容需下载
§2.5函数性质的综合应用[培优课]第二章函 数
函数性质的综合应用是历年高考的一个热点内容,经常以客观题出现,通过分析函数的性质特点,结合图象研究函数的性质,往往多种性质结合在一起进行考查.
例1(2020·新高考全国Ⅰ)若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]√题型一函数的奇偶性与单调性
因为函数f(x)为定义在R上的奇函数,则f(0)=0.又f(x)在(-∞,0)上单调递减,且f(2)=0,画出函数f(x)的大致图象如图(1)所示,则函数f(x-1)的大致图象如图(2)所示.当x≤0时,要满足xf(x-1)≥0,则f(x-1)≤0,得-1≤x≤0.当x>0时,要满足xf(x-1)≥0,则f(x-1)≥0,得1≤x≤3.故满足xf(x-1)≥0的x的取值范围是[-1,0]∪[1,3].(1)(2)
(1)解抽象函数不等式,先把不等式转化为f(g(x))>f(h(x)),利用单调性把不等式的函数符号“f”脱掉,得到具体的不等式(组).(2)比较大小,利用奇偶性把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上,进而利用其单调性比较大小.思维升华
√
所以函数f(x)在(-∞,0]上单调递增,由f(x)为偶函数,得函数f(x)在[0,+∞)上单调递减,所以f(sin3)>f(ln3)>f(21.5),即a>b>c.
例2(2023·襄阳模拟)已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),当x∈[0,1]时,f(x)单调递增,则√题型二函数的奇偶性与周期性
∵f(x+2)=-f(x),∴f(x+4)=f((x+2)+2)=-f(x+2)=f(x),∴函数f(x)是周期为4的周期函数,又当x∈[0,1]时,f(x)单调递增,
周期性与奇偶性结合的问题多考查求函数值、比较大小等,常利用奇偶性和周期性将所求函数值的自变量转化到已知解析式的函数定义域内,或已知单调性的区间内求解.
跟踪训练2(2023·广州模拟)已知f(x)是定义在R上的奇函数,f(x+1)=f(x-1),则f(2021)+f(2022)等于A.1B.0C.-2021D.-1√f(x+1)=f(x-1),∴f(x+2)=f(x),∴f(x)的周期为2,∴f(2021)+f(2022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,又f(-1)=-f(1),且f(-1)=f(1),∴f(1)=0,∴f(2021)+f(2022)=0.
例3(多选)已知定义域为R的函数f(x)满足f(-x)+f(x)=0,且f(1-x)=f(1+x),则下列结论一定正确的是A.f(x+2)=f(x)B.函数y=f(x)的图象关于点(2,0)对称C.函数y=f(x+1)是偶函数D.f(2-x)=f(x-1)题型三函数的奇偶性与对称性√√
对于A选项,因为f(-x)+f(x)=0,且f(1-x)=f(1+x),则f(1-(1+x))=f(1+(1+x)),即f(x+2)=-f(x),A错;对于B选项,因为f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),因为f(-x)+f(x)=0,则f(-(2+x))+f(2+x)=0,即f(2+x)=-f(-2-x)=-f(2-x),即f(2+x)+f(2-x)=0,故函数y=f(x)的图象关于点(2,0)对称,B对;对于C选项,因为f(1-x)=f(1+x),故函数y=f(x+1)是偶函数,C对;对于D选项,因为f(1-x)=f(1+x),则f(1-(x-1))=f(1+(x-1)),即f(2-x)=f(x)≠f(x-1),D错.
由函数的奇偶性与对称性可求函数的周期,常用于化简求值、比较大小等.
跟踪训练3(2022·南阳模拟)已知函数f(x)是R上的偶函数,且f(x)的图象关于点(1,0)对称,当x∈[0,1]时,f(x)=2-2x,则f(0)+f(1)+f(2)+…+f(2024)的值为A.-2B.-1C.0D.1√
∵f(x)的图象关于点(1,0)对称,∴f(-x)=-f(2+x),又f(x)为R上的偶函数,∴f(x)=f(-x),∴f(x+2)=-f(-x)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是周期为4的周期函数,∴f(3)=f(-1)=f(1)=2-2=0,
又f(0)=1,f(2)=-f(0)=-1,∴f(0)+f(1)+f(2)+…+f(2024)=506[f(0)+f(1)+f(2)+f(3)]+f(2024)=506×(1+0-1+0)+f(0)=1.
例4(多选)已知y=f(x)是定义在R上的奇函数,满足f(x+1)=f(x-2),下列说法正确的是C.y=f(x)在[0,6]内至少有5个零点D.若y=f(x)在[0,1]上单调递增,则它在[2021,2022]上也单调递增题型四函数的周期性与对称性√√√
因为f(x+1)=f(x-2)且y=f(x)是定义在R上的奇函数,则f(x+3)=f(x),故函数f(x)是周期为3的周期函数,且f(x+3)=f(x)=-f(-x),由题意可知,f(6)=f(3)=f(0)=0,
故函数y=f(x)在[0,6]内至少有5个零点,C正确;因为f(2021)=f(3×674-1)=f(-1),f(2022)=f(3×674)=f(0),且函数f(x)在[0,1]上单调递增,则函数f(x)在[-1,0]上也单调递增,故函数f(x)在[2021,2022]上也单调递增,D正确.
函数的奇偶性、对称性、周期性和单调性是函数的四大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性、对称性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.
跟踪训练4(多选)已知f(x)是定义域为R的函数,满足f(x+1)=f(x-3),f(1+x)=f(3-x),当0≤x≤2时,f(x)=x2-x,则下列说法正确的是A.f(x)的周期为4B.f(x)的图象关于直线x=2对称C.当0≤x≤4时,函数f(x)的最大值为2D.当6≤x≤8时,函数f(x)的最小值为√√√
对于A,∵f(x+1)=f(x-3),∴f(x+3+1)=f(x+3-3),则f(x)=f(x+4),即f(x)的周期为4,故A正确;对于B,由f(1+x)=f(3-x)知f(x)的图象关于直线x=2对称,故B正确;
课时精练
1.(2022·湖北九师联盟模拟)已知定义在R上的奇函数f(x)在(-∞,0]上单调递减,若f(-2)=1,则满足|f(2x)|≤1的x的取值范围是A.[-1,1]B.[-2,2]C.(-∞,-1]∪[1,+∞)D.(-∞,-2]∪[2,+∞)12345678910√根据奇函数的性质,得f(x)在R上单调递减,且f(2)=-1;由|f(2x)|≤1,得-1≤f(2x)≤1,即f(2)≤f(2x)≤f(-2),所以-2≤2x≤2,解得-1≤x≤1.
√12345678910
12345678910由题意,函数f(x)是定义在R上的奇函数,且f(x+1)=f(-x+1),可得f(x+1)=-f(x-1),所以f(x)=f(x+4),所以函数f(x)是周期为4的周期函数.又由当0<x≤1时,f(x)=x2-2x+3,
3.(2023·许昌质检)已知f(x)是定义在R上的偶函数,且在(-∞,0)上单调递减,若a=-log310,,,则f(a),f(b),f(c)的大小关系为A.f(a)>f(c)>f(b)B.f(a)>f(b)>f(c)C.f(b)>f(a)>f(c)D.f(c)>f(a)>f(b)√12345678910
12345678910∵f(x)是定义在R上的偶函数,∴f(a)=f(-log310)=f(log310),且2<log310<3,f(b)=f(-3)=f(3),f(c)=f(),且1<<2,∵f(x)在(-∞,0)上单调递减,∴f(x)在(0,+∞)上单调递增,则f(c)<f(a)<f(b).
123456789104.(2023·唐山模拟)已知函数f(x)=x3+ax2+x+b的图象关于点(1,0)对称,则b等于A.-3B.-1C.1D.3√
∵f(x)的图象关于点(1,0)对称,∴f(x)+f(2-x)=0,又f(2-x)=(2-x)3+a(2-x)2+(2-x)+b=-x3+(a+6)x2-(4a+13)x+10+4a+b,∴f(x)+f(2-x)=(2a+6)x2-(4a+12)x+10+4a+2b=0,12345678910
12345678910√
12345678910令f(0)=lg(2+a)=0,得a=-1,所以f(x)在(-1,1)上单调递减,
123456789106.(多选)(2023·盐城模拟)已知函数f(x)为R上的奇函数,g(x)=f(x+1)为偶函数,下列说法正确的有A.f(x)的图象关于直线x=-1对称B.g(2023)=0C.g(x)的最小正周期为4D.对任意x∈R都有f(2-x)=f(x)√√√
因为f(x)为R上的奇函数,且g(x)=f(x+1)为偶函数,所以f(x)的图象关于直线x=-1对称,所以f(x)=f(2-x),A,D正确;由A分析知f(x)=f(2-x)=-f(-x),故f(2+x)=-f(x),所以f(4+x)=-f(2+x)=f(x),所以f(x)是周期为4的周期函数,则g(2023)=f(2024)=f(0)=0,B正确;但不能说明g(x)的最小正周期为4,C错误.12345678910
123456789107.(多选)已知奇函数f(x)在(0,1]上单调递减,且满足f(x)+f(2-x)=0,则下列说法正确的是A.函数f(x)是以2为最小正周期的周期函数B.函数f(x)是以4为周期的周期函数C.函数f(x-1)为奇函数D.函数f(x)在[5,6)上单调递增√√√
12345678910对于选项A,B,∵函数f(x)为奇函数,∴f(-x)=-f(x).∵f(x)+f(2-x)=0,∴f(-x)+f(2+x)=0,则-f(x)+f(2+x)=0,即f(2+x)=f(x),故函数f(x)是最小正周期为2的周期函数,由此可知选项A,B正确;对于选项C,令F(x)=f(x-1),则F(-x)=f(-x-1)=-f(x+1).在f(x)+f(2-x)=0中,将x换为x+1,得f(x+1)+f(1-x)=0,∴f(x+1)=-f(1-x),∴F(-x)=-f(x+1)=f(1-x)=-f(x-1)=-F(x),则函数F(x)=f(x-1)为奇函数,∴选项C正确.
12345678910对于选项D,由函数f(x)是以2为最小正周期的周期函数,则函数f(x)在[5,6)上的单调性等价于函数f(x)在[-1,0)上的单调性,又奇函数f(x)在(0,1]上单调递减,∴函数f(x)在[-1,0)上单调递减.∴选项D不正确.
123456789108.(多选)已知函数f(x)的定义域为R,且f(2x+1)是偶函数,f(x-1)是奇函数,则下列命题正确的是A.f(x)=f(x-16)B.f(11)=1C.f(2022)=-f(0)D.f(2021)=f(-3)√√√
因为f(2x+1)是偶函数,所以f(2x+1)=f(-2x+1),令t=2x+1,则2x=t-1,故-2x+1=2-t,所以f(t)=f(2-t),即f(x)=f(2-x),所以函数f(x)关于直线x=1对称,因为f(x-1)是奇函数,所以f(-1)=0,且函数f(x-1)关于(0,0)对称,又因为函数f(x-1)是由函数f(x)向右平移1个单位长度得到,所以f(x)关于(-1,0)对称,所以f(-x-1)=-f(x-1),所以f(x)=-f(-x-2),12345678910
所以f(2-x)=-f(-x-2),则f(x)=-f(x-4)=f(x-8),即f(x)=f(x+8),所以函数f(x)的一个周期为8,故有f(x)=f(x+(-2)×8)=f(x-16),故A正确;由函数f(x)关于直线x=1对称,f(-1)=0,所以f(3)=f(-1)=0,所以f(11)=f(3)=0,故B错误;因为f(2022)=f(8×253-2)=f(-2),因为f(x)关于(-1,0)对称,12345678910
所以f(-2)=-f(0),所以f(2022)=-f(0),故C正确;又f(2021)=f(8×253-3)=f(-3),故D正确.12345678910
123456789109.(2023·南昌模拟)已知f(x)为定义在[-1,1]上的偶函数,且在[-1,0]上单调递减,则满足不等式f(2a)<f(4a-1)的a的取值范围是_______.(用区间表示)
12345678910因为f(x)为定义在[-1,1]上的偶函数,且在[-1,0]上单调递减,所以f(x)在[0,1]上单调递增,所以-1≤2a≤1,-1≤4a-1≤1,|2a|<|4a-1|,
1234567891010.(2022·济宁模拟)已知函数f(x)=e|x-1|-,则使得f(x)>f(2x)成立的x的取值范围是________.
而易知g(x)是偶函数,12345678910
当0<x≤2时,显然g′(x)>0;所以g′(x)>0,所以g(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减.从而可知f(x)在(1,+∞)上单调递增,在(-∞,1)上单调递减.12345678910
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)