首页

2024年高考数学一轮复习讲义(学生版)第2章 §2.5 函数性质的综合应用[培优课]

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

§2.5 函数性质的综合应用函数性质的综合应用是历年高考的一个热点内容,经常以客观题出现,通过分析函数的性质特点,结合图象研究函数的性质,往往多种性质结合在一起进行考查.题型一 函数的奇偶性与单调性例1 (2020·新高考全国Ⅰ)若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是(  )A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]听课记录:______________________________________________________________________________________________________________________________________思维升华 (1)解抽象函数不等式,先把不等式转化为f(g(x))>f(h(x)),利用单调性把不等式的函数符号“f”脱掉,得到具体的不等式(组).(2)比较大小,利用奇偶性把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上,进而利用其单调性比较大小.跟踪训练1 (2023·合肥质检)若f(x)是定义在R上的偶函数,对∀x1,x2∈(-∞,0],当x1≠x2时,都有>0,则a=f(sin3),b=f ,c=f(21.5)的大小关系是(  )A.a>b>cB.a>c>bC.b>c>aD.c>b>a题型二 函数的奇偶性与周期性例2 (2023·襄阳模拟)已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),当x∈[0,1]时,f(x)单调递增,则(  )A.f(6)<f(-7)<f B.f(6)<f <f(-7)C.f(-7)<f <f(6)D.f <f(-7)<f(6)听课记录:______________________________________________________________3 ________________________________________________________________________思维升华 周期性与奇偶性结合的问题多考查求函数值、比较大小等,常利用奇偶性和周期性将所求函数值的自变量转化到已知解析式的函数定义域内,或已知单调性的区间内求解.跟踪训练2 (2023·广州模拟)已知f(x)是定义在R上的奇函数,f(x+1)=f(x-1),则f(2021)+f(2022)等于(  )A.1B.0C.-2021D.-1题型三 函数的奇偶性与对称性例3 (多选)已知定义域为R的函数f(x)满足f(-x)+f(x)=0,且f(1-x)=f(1+x),则下列结论一定正确的是(  )A.f(x+2)=f(x)B.函数y=f(x)的图象关于点(2,0)对称C.函数y=f(x+1)是偶函数D.f(2-x)=f(x-1)听课记录:______________________________________________________________________________________________________________________________________思维升华 由函数的奇偶性与对称性可求函数的周期,常用于化简求值、比较大小等.跟踪训练3 (2022·南阳模拟)已知函数f(x)是R上的偶函数,且f(x)的图象关于点(1,0)对称,当x∈[0,1]时,f(x)=2-2x,则f(0)+f(1)+f(2)+…+f(2024)的值为(  )A.-2B.-1C.0D.1题型四 函数的周期性与对称性例4 (多选)已知y=f(x)是定义在R上的奇函数,满足f(x+1)=f(x-2),下列说法正确的是(  )A.y=f(x)的图象关于直线x=对称B.y=f(x)的图象关于点对称C.y=f(x)在[0,6]内至少有5个零点D.若y=f(x)在[0,1]上单调递增,则它在[2021,2022]上也单调递增听课记录:______________________________________________________________________________________________________________________________________思维升华 函数的奇偶性、对称性、周期性和单调性是函数的四大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性、对称性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.跟踪训练4 (多选)已知f(x)是定义域为R的函数,满足f(x+1)=f(x-3),f(1+x)=f(3-x),当0≤x≤2时,f(x)=x2-x,则下列说法正确的是(  )3 A.f(x)的周期为4B.f(x)的图象关于直线x=2对称C.当0≤x≤4时,函数f(x)的最大值为2D.当6≤x≤8时,函数f(x)的最小值为-3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-09-12 13:20:01 页数:3
价格:¥1 大小:71.69 KB
文章作者:180****8757

推荐特供

MORE