首页

三角形的七大全等模型(压轴专练)(学生版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/13

2/13

3/13

4/13

5/13

6/13

7/13

8/13

9/13

10/13

剩余3页未读,查看更多内容需下载

三角形的七大全等模型(压轴专练)目录【题型一手拉手模型】【题型二半角模型】【题型三对角互补模型】【题型四三垂直模型】【题型五一线三等角模型】【题型六雨伞模型】【题型七胖瘦模型】【题型一手拉手模型】模型一:手拉手模型(一)有公共顶点的等边三角形(二)有公共顶点的等腰直角三角形(三)顶角相等的等腰三角形1 1(1)如图1,已知△CAB和△CDE均为等边三角形,D在AC上,E在CB上,易得线段AD和BE的数量关系是.(2)将图1中的△CDE绕点C旋转到图2的位置,直线AD和直线BE交于点F.①判断线段AD和BE的数量关系,并证明你的结论;②图2中∠AFB的度数是.(3)如图3,若△CAB和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直线AD和直线BE交于点F,分别写出∠AFB的度数,线段AD、BE间的数量关系.【题型二半角模型】模型二:半角模型(一)等边三角形中120°含60°半角模型(二)等腰直角三角形中90°含45°半角模型2 1如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.【题型三对角互补模型】模型三:对角互补模型(一)“共斜边等腰直角三角形+直角三角形”模型(异侧型)已知直角△ABC和等腰直角△DBC,则AB+AC=2AD.(二)“共斜边等腰直角三角形+直角三角形”模型(同侧型)已知直角△ABC和等腰直角△DBC,则AB-AC=2AD.3 (三)“等边三角形对120°模型”.△ABC是等边三角形,∠BPC=120°,则有PB+PC=PA;(四)“120°等腰三角形对60°模型”△ABC是等腰三角形,且∠BAC=120°,∠BPC=60°,则有PB+PC=3PA;1如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.4 【题型四三垂直模型】模型四:三垂直模型1如图,AB=BC,AB⊥BC,AE⊥BD于F,BC⊥CD,求证:EC=AB-CD.【题型五一线三等角模型】模型五:一线三等角模型题型特征:图形的某条线段上出现三个相等的角,如图中∠B=∠2=∠C5 解题方法:只要题目再出现一组等边(BE=AC或EF=AE或BF=EC),必证△BEF≌△CAE(AAS或ASA)证明过程:∵∠1=180°-∠2-∠3,∠4=180°-∠C-∠3,∵∠2=∠C,∴∠1=∠4,∵∠B=∠C,若BE=AC或EF=AE或BF=EC,则△BEF≌△CAE(AAS或ASA)1如图,在ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=______°,∠AED=______°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【题型六雨伞模型】模型六:雨伞模型模型讲解【结论】如图,AP是∠BAC的平分线,BO⊥AP,垂足为O,延长BO交AC于点D,则△ABO≌△ADO,AB=AD,OB=OD.【证明】根据题意得,在△ABO与△ADO中,∠BAO=∠DAO,AO=AO,∠AOB=∠AOD,∴△ABO≌△ADO,∴AB=AD,OB=OD.1已知,如图ΔABC中,AB=AC,∠A=90°,∠ACB的平分线CD交AB于点E,∠BDC=90°,求证:CE=2BD.6 【题型七胖瘦模型】模型七:边边角模型SSA(胖瘦模型)胖瘦模型--两条边对应相等,一组角对应相等,两个角互补.模型讲解【模型】如图所示,在等腰△ABC中,AB=AC,点P在线段BC上且P不是BC的中点.【结论1】(变胖)如图所示,在BC上截取CQ=BP,连接AQ,△ABQ≌△ACP(SAS),AP=AQ.6【结论2】(变瘦)如图所示,在BC上截取CQ=BP,连接AQ,△ABP≌ACQ(SAS),AP=AQ.【结论3】如图所示,过点A作AM⊥BC,垂足为M,△ABM≌△ACM(SAS).【总结】两个三角形满足两条边对应相等,并且其中一条边的对角相等,满足的条件为SSA.处理方法:1变胖(加等腰).2变瘦(减等腰).1如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.7 一、单选题1如图,将△ABC绕点C顺时针旋转90°得到△EDC,点A、D、E在同一条直线上.若∠ACB=20°,则∠ADC的度数是()A.60°B.65°C.70°D.75°2如图所示的正方形ABCD中,点E在边CD上,把△ADE绕点A顺时针旋转得到△ABF,∠FAB=20°.旋转角的度数是()A.110°B.90°C.70°D.20°3如图,在△ABC中,AB=6,BC=10,BD是边AC上的中线,则BD的长度可能为()A.1B.2C.5D.84如图,点E是△ABC内一点,∠AEB=90°,AE平分∠BAC,D是边AB的中点,延长线段DE交边BC于点F,若AB=6,EF=1,则线段AC的长为()8 A.7B.8C.9D.105如图,在ΔABC中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),求点B的坐标()A.3,4B.2,3C.2,4D.1,46如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CD于点D,AE=5cm,BD=2cm,则DE的长是()A.8cmB.4cmC.3cmD.2cm二、填空题7如图,△ABC按顺时针方向转动40°得△AED,点D恰好在边BC上,则∠C=°.8如图,在△ABC中,∠ACB=90°,将△ABC绕点A逆时针旋转到△AEF,延长BC交EF于点D,若BD=5,BC=4,则DE=.9 9如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点C的坐标是(3,2),则点A的坐标是.10在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是.11(2016育才周测)如图,正三角形ΔABC和ΔCDE,A,C,E在同一直线上,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的结论有.并写出3对全等三角形.12如图所示,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,则∠A+∠C的度数是度.三、解答题13通过对如图数学模型的研究学习,解决下列问题:10 (1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(3)如图3,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S1+S2=10.求出S1的值.14(1)【特例探究】如图1,在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°,∠BAD=100°,∠EAF=50°,猜想并写出线段BE,DF,EF之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,∠BAD=2∠EAF.请写出线段BE,DF,EF之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇甲在指挥中心(O处)北偏东20°的A处.舰艇乙在指挥中心南偏西50°的B处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C,D处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.15已知:△ABC≌△DEC,∠ACB=90°,∠B=32°.11 (1)如图1当点D在AB上,∠ACD.(2)如图2猜想△BDC与△ACE的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)16如图1,△ABC和△ABD中,∠BAC=∠ABD=90°,点C和点D在AB的异侧,点E为AD边上的一点,且AC=AE,连接CE交直线AB于点G,过点A作AF⊥AD交直线CE于点F.(Ⅰ)求证:△AGE≌△AFC;(Ⅱ)若AB=AC,求证:AD=AF+BD;(Ⅲ)如图2,若AB=AC,点C和点D在AB的同侧,题目其他条件不变,直接写出线段AD,AF,BD的数量关系.17已知,△ABC中,∠BAC=90°,AB=AC,直线m过点A,且BD⊥m于D,CE⊥m于E,当直线m绕点A旋转至图1位置时,我们可以发现DE=BD+CE.(1)当直线m绕点A旋转至图2位置时,问:BD与DE、CE的关系如何?请予证明;(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在哪几种不同的数量关系?(直接写出,不必证12 明)18如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°,线段BC分别交AF,EF于点M,N.(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.19阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=7,AC=3,求BC边上的中线AD的取值范围.(1)小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD到Q使得DQ=AD;②再连接BQ,把AB、AC、2AD集中在△ABQ中;③利用三角形的三边关系可得4<AQ<10,则AD的取值范围是.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)请写出图1中AC与BQ的位置关系并证明;(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°,试探究线段AD与EF的数量和位置关系,并加以证明.13

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-05-24 12:20:01 页数:13
价格:¥3 大小:1.38 MB
文章作者:180****8757

推荐特供

MORE