首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
一轮复习
>
2024中考数学第一轮专题复习: 圆的有关性质(学生版)
2024中考数学第一轮专题复习: 圆的有关性质(学生版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/13
2
/13
3
/13
4
/13
5
/13
6
/13
7
/13
8
/13
9
/13
10
/13
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
圆的有关性质(46题)一、单选题1(2023·四川自贡·统考中考真题)如图,△ABC内接于⊙O,CD是⊙O的直径,连接BD,∠DCA=41°,则∠ABC的度数是()A.41°B.45°C.49°D.59°2(2023·四川凉山·统考中考真题)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A.1B.2C.23D.43(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB是以点O为圆心、OA为半径的圆弧,N是AB的中点,MN⊥AB.“会圆术”给出MN2AB的弧长l的近似值计算公式:l=AB+.当OA=4,∠AOB=60°时,则l的值为()OAA.11-23B.11-43C.8-23D.8-434(2023·四川宜宾·统考中考真题)如图,已知点A、B、C在⊙O上,C为AB的中点.若∠BAC=35°,则∠AOB等于()·1· A.140°B.120°C.110°D.70°5(2023·安徽·统考中考真题)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°6(2023·江苏连云港·统考中考真题)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O的两条线段与一段圆弧所围成的图形,下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形7(2023·云南·统考中考真题)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°8(2023·新疆·统考中考真题)如图,在⊙O中,若∠ACB=30°,OA=6,则扇形OAB(阴影部分)的面积是()·2· A.12πB.6πC.4πD.2π9(2023·浙江温州·统考中考真题)如图,四边形ABCD内接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=3,则∠CAO的度数与BC的长分别为()A.10°,1B.10°,2C.15°,1D.15°,210(2023·浙江台州·统考中考真题)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为().A.2B.2C.4+22D.4-2211(2023·山东枣庄·统考中考真题)如图,在⊙O中,弦AB,CD相交于点P,若∠A=48°,∠APD=80°,则∠B的度数为()A.32°B.42°C.48°D.52°12(2023·四川内江·统考中考真题)如图,正六边形ABCDEF内接于⊙O,点P在AF上,Q是DE的中点,则∠CPQ的度数为()·3· A.30°B.36°C.45°D.60°13(2023·湖北十堰·统考中考真题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为()A.43B.7C.8D.4514(2023·山西·统考中考真题)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40°B.50°C.60°D.70°15(2023·湖北宜昌·统考中考真题)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为().A.5B.4C.3D.216(2023·河北·统考中考真题)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()·4· A.a<bB.a=bC.a>bD.a,b大小无法比较17(2023·浙江杭州·统考中考真题)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()A.23°B.24°C.25°D.26°18(2023·湖北黄冈·统考中考真题)如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC=70°,则∠ADC=()A.70°B.60°C.50°D.40°19(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为()A.20mB.28mC.35mD.40m·5· 20(2023·四川·统考中考真题)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,AC,若∠BOD=124°,则∠ACD的度数是()A.56°B.33°C.28°D.23°21(2023·山东聊城·统考中考真题)如图,点O是△ABC外接圆的圆心,点I是△ABC的内心,连接OB,IA.若∠CAI=35°,则∠OBC的度数为()A.15°B.17.5°C.20°D.25°22(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O的面积,可得π的33估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为()2A.3B.22C.3D.2323(2023·广东·统考中考真题)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20°B.40°C.50°D.80°·6· 24(2023·河南·统考中考真题)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°25(2023·全国·统考中考真题)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°26(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°27(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a和直线外一定点O,过点O作直线与a平行.(1)以O为圆心,单位长为半径作圆,交直线a于点M,N;(2)分别在MO的延长线及ON上取点A,B,使OA=OB;(3)连接AB,取其中点C,过O,C两点确定直线b,则直线a∥b.按以上作图顺序,若∠MNO=35°,则∠AOC=()·7· A.35°B.30°C.25°D.20°二、填空题28(2023·四川南充·统考中考真题)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.29(2023·浙江金华·统考中考真题)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.30(2023·四川广安·统考中考真题)如图,△ABC内接于⊙O,圆的半径为7,∠BAC=60°,则弦BC的长度为.31(2023·甘肃武威·统考中考真题)如图,△ABC内接于⊙O,AB是⊙O的直径,点D是⊙O上一点,∠CDB=55°,则∠ABC=°.·8· 32(2023·浙江绍兴·统考中考真题)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.33(2023·山东烟台·统考中考真题)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为.34(2023·湖南·统考中考真题)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是个.35(2023·湖南永州·统考中考真题)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm.水的最深处到水面AB的距离为4cm,则水面AB的宽度为cm.·9· 36(2023·湖北随州·统考中考真题)如图,在⊙O中,OA⊥BC,∠AOB=60°,则∠ADC的度数为.37(2023·湖南·统考中考真题)如图所示,点A、B、C是⊙O上不同的三点,点O在△ABC的内部,连接BO、CO,并延长线段BO交线段AC于点D.若∠A=60°,∠OCD=40°,则∠ODC=度.38(2023·湖南郴州·统考中考真题)如图,某博览会上有一圆形展示区,在其圆形边缘的点P处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器台.39(2023·浙江杭州·统考中考真题)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形S1ABCDEF的面积为S1,△ACE的面积为S2,则=.S2·10· 40(2023·广东深圳·统考中考真题)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=°.41(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD为⊙O的直径,弦AB⊥CD,垂足为点E,CE=1寸,AB=10寸,则直径CD的长度是寸.三、解答题42(2023·浙江金华·统考中考真题)如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D.连接AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=7,求弦CD的长.·11· 43(2023·甘肃武威·统考中考真题)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知⊙O,A是⊙O上一点,只用圆规将⊙O的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A为圆心,OA长为半径,自点A起,在⊙O上逆时针方向顺次截取AB=BC=CD;②分别以点A,点D为圆心,AC长为半径作弧,两弧交于⊙O上方点E;③以点A为圆心,OE长为半径作弧交⊙O于G,H两点.即点A,G,D,H将⊙O的圆周四等分.44(2023·上海·统考中考真题)如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC41=,OC=OB.52(1)求⊙O的半径;(2)求∠BAC的正切值.·12· 45(2023·湖北武汉·统考中考真题)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BAC.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.46(2023·贵州·统考中考真题)如图,已知⊙O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交⊙O于点E,连接EA,EB.(1)写出图中一个度数为30°的角:,图中与△ACD全等的三角形是;(2)求证:△AED∽△CEB;(3)连接OA,OB,判断四边形OAEB的形状,并说明理由.·13·
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
初中数学中考冲刺-与圆有关的角专题
2022年中考数学专题复习讲座 第二十三讲 圆的有关概念及性质
2022年中考数学专题复习第六单元圆课时训练二十七圆的有关性质练习
2024中考数学第一轮专题复习:因式分解(学生版)
2024中考数学第一轮专题复习: 二次根式(学生版)
2024中考数学第一轮专题复习: 二次函数图象性质与应用(学生版)
2024中考数学第一轮专题复习: 图形的平移翻折对称(学生版)
2024中考数学第一轮专题复习: 图形的旋转(学生版)
2024中考数学第一轮专题复习: 图形的相似(学生版)
2024中考数学第一轮专题复习: 圆的有关性质(解析版)
文档下载
收藏
所属:
中考 - 一轮复习
发布时间:2024-02-29 07:20:02
页数:13
价格:¥3
大小:2.09 MB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划