首页

数学一轮复习专题9.3 椭圆 (新教材新高考)(练)学生版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

专题9.3椭圆练基础1.(浙江高考真题)椭圆的离心率是()A.B.C.D.2.(2019·北京高考真题)已知椭圆(a>b>0)的离心率为,则()A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b3.(上海高考真题)设是椭圆上的点.若是椭圆的两个焦点,则等于()A.4B.5C.8D.104.(2020·四川资阳�高三其他(理))已知椭圆:经过点,且的离心率为,则的方程是()A.B.C.D.5.(2020·河北枣强中学高三月考(文))已知椭圆C的方程为,焦距为,直线与椭圆C相交于A,B两点,若,则椭圆C的离心率为()A.B.C.D.6.(2021·全国高三专题练习)已知,分别是椭圆的上、下焦点,在椭圆上是否存在点P,使,,成等差数列?若存在求出和的值;若不存在,请说明理由. 7.(2021·全国高三专题练习)设F是椭圆的右焦点,且椭圆上至少有21个不同的点(,2,…),使,,,…组成公差为d的等差数列,求a的取值范围.8.(2021·全国高三专题练习)已知定点,点为椭圆的右焦点,点M在椭圆上移动时,求的最大值;9.(2021·云南师大附中高三月考(理))椭圆C:的离心率是,且点A(2,1)在椭圆C上,O是坐标原点.(1)求椭圆C的方程;(2)直线l过原点,且l⊥OA,若l与椭圆C交于B,D两点,求弦BD的长度.10.(2021·南昌大学附属中学高二月考)已知是椭圆两个焦点,且.(1)求此椭圆的方程;(2)设点在椭圆上,且,求的面积.练提升TIDHNEG1.(2021·全国高二课时练习)已知椭圆与圆,若在椭圆上存在点,使得过点所作的圆的两条切线互相垂直,则椭圆的离心率的取值范围是()A.B.C.D.2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆:()的左焦点为,经过原点的直线与交于,两点,总有,则椭圆离心率的取值范围为______.3.(2019·浙江高三月考)已知、分别为椭圆的左、右焦点,点关于直线对称的点Q在椭圆上,则椭圆的离心率为______;若过且斜率为的直线与椭圆相交于AB两点,且,则___. 4.(2019·浙江温州中学高三月考)已知点在圆上,点在椭圆上,且的最大值等于,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为,则的最大值等于__________.5.(2020·浙江高三月考)已知是椭圆()和双曲线()的一个交点,是椭圆和双曲线的公共焦点,分别为椭圆和双曲线的离心率,若,则的最小值为________.6.(2020·浙江高三其他)已知当动点P到定点F(焦点)和到定直线的距离之比为离心率时,该直线便是椭圆的准线.过椭圆上任意一点P,做椭圆的右准线的垂线PH(H为垂足),并延长PH到Q,使得HQ=λPH(λ≥1).当点P在椭圆上运动时,点Q的轨迹的离心率的取值范围是___.7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z轴上,离心率,已知点到这个椭圆上的点的最远距离是,求椭圆方程,并求椭圆上到点O的距离为的点的坐标.8.(2021·全国高三专题练习)椭圆的焦点为、,点P为其上动点,当为钝角时,求点P横坐标的取值范围.9.(2021·全国)(1)已知,是椭圆的两个焦点,是椭圆上一点,求的最大值;(2)已知,是椭圆的左焦点,点是椭圆上的动点,求的最大值和最小值.10.(2021·贵州高三月考(文))已知椭圆C:的离心率为,直线l经过椭圆C的右焦点F与上顶点,原点O到直线l的距离为.(1)求椭圆C的方程;(2)斜率不为0的直线n过点F,与椭圆C交于M,N两点,若椭圆C上一点P满足 ,求直线n的斜率.练真题TIDHNEG1.(2021·全国高考真题(理))设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A.B.C.D.2.(2018·全国高考真题(理))已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为()A.B.C.D.3.(2019·全国高考真题(文))已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为()A.B.C.D.4.(2019·全国高考真题(文))设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.5.(2021·江苏高考真题)已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.6.(2020·天津高考真题)已知椭圆的一个顶点为,右焦点为,且,其中为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-10-24 13:00:02 页数:5
价格:¥5 大小:271.50 KB
文章作者:180****8757

推荐特供

MORE