首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2023年新高考一轮复习讲义第38讲 数列的综合应用(原卷版)
2023年新高考一轮复习讲义第38讲 数列的综合应用(原卷版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第38讲 数列的综合应用学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·辽宁·沈阳二中模拟预测)我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则( )A.2192B.C.D.2.(2022·山东泰安·一模)已知数列是首项为,公差为1的等差数列,数列满足.若对任意的,都有成立,则实数的取值范围是( )A.,B.C.,D.3.(2022·全国·高三专题练习)已知数列的前项和为,且,,若,则称项为“和谐项",则数列的所有“和谐项”的平方和为( )A.B.C.D.4.(2022·北京朝阳·一模)已知数列,若存在一个正整数使得对任意,都有,则称为数列的周期.若四个数列分别满足:①,;②,;③,,;④,.则上述数列中,8为其周期的个数是( )试卷第8页,共1页学科网(北京)股份有限公司 A.1B.2C.3D.45.(2022·全国·高三专题练习)朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有132根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( )A.5B.6C.7D.86.(2022·江苏·盐城中学高三开学考试)已知数列的前项和为,且().记,为数列的前项和,则使成立的最小正整数为( )A.5B.6C.7D.87.(2022·山东·聊城二中高三开学考试)在正整数数列中,由1开始依次按如下规则取该数列的项:第一次取1;第二次取2个连续的偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续的偶数10,12,14,16;第五次取5个连续的奇数17,19,21,23,25;按此规律取下去,得到一个数列1,2,4,5,7,9,10,12,14,16,17,19…,则这个数列中第2022个数是( )A.3974B.3976C.3978D.39808.(2022·江苏·高三专题练习)若数列的前项和为,,则称数列是数列的“均值数列”.已知数列是数列的“均值数列”且通项公式为,设数列的前项和为,若对一切恒成立,则实数的取值范围为( )A.B.C.D.9.(多选)(2022·重庆巴蜀中学高三阶段练习)已知正项数列满足,,则下列说法正确的是( )A.是等比数列B.对任意的,C.对任意都成立D.试卷第8页,共1页学科网(北京)股份有限公司 10.(多选)(2022·江苏·苏州市第六中学校三模)在数列中,若(为非零常数),则称为“等方差数列”,称为“公方差”,下列对“等方差数列”的判断正确的是( )A.是等方差数列B.若正项等方差数列的首项,且是等比数列,则C.等比数列不可能为等方差数列D.存在数列既是等方差数列,又是等差数列11.(2022·浙江·高三专题练习)已知桶中盛有2升水,桶中盛有1升水.现将桶中的水的和桶中的水的倒入桶中,再将桶与桶中剩余的水倒入桶中;然后将桶中的水的和桶中的水的倒入桶中,再将桶与桶中剩余的水倒入桶中;若如此继续操作下去,则桶中的水比桶中的水多_______升.12.(2022·江苏·金陵中学高三阶段练习)数列通项公式.若等差数列满足:,都有,则数列的通项公式___________.13.(2022·湖南·雅礼中学高三阶段练习)数列满足:,,,.若,对,不等式恒成立,则实数的最大值为___________.14.(2022·江苏省响水中学高三阶段练习)已知数列的前项和,对任意,且恒成立,则实数的取值范围是__________.15.(2022·湖南·长郡中学高三阶段练习)已知数列对任意的,都有,且.①当时,_________.②若存在,当且为奇数时,恒为常数P,则P=_________.16.(2022·江苏省江阴高级中学高三开学考试)已知是公差为1的等差数列,且,,试卷第8页,共1页学科网(北京)股份有限公司 成等比数列.(Ⅰ)求的通项公式; (Ⅱ)求数列的前n项和.17.(2022·山东日照·高三开学考试)已知数列{an},{bn},{cn}中,.(Ⅰ)若数列{bn}为等比数列,且公比,且,求q与{an}的通项公式;(Ⅱ)若数列{bn}为等差数列,且公差,证明:.试卷第8页,共1页学科网(北京)股份有限公司 18.(2022·湖南·长沙一中高三阶段练习)已知数列满足,.(1)证明:数列是等差数列,并求数列的通项公式;(2)记,,.证明:当时,.试卷第8页,共1页学科网(北京)股份有限公司 【素养提升】1.(2022·全国·高三专题练习)已知成等比数列,且.若,则A.B.C.D.2.(2022·湖北·天门市教育科学研究院模拟预测)已知数列的首项是,前项和为,且,设,若存在常数,使不等式恒成立,则的取值范围为( )A.B.C.D.3.(2022·浙江·绍兴一中高三期末)已知数列满足(),,则当时,下列判断不一定正确的是( )A.B.C.D.存在正整数k,当时,恒成立4.(2022·全国·高三专题练习)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.5.(2022·福建厦门·模拟预测)已知数列与数列的前n项和分别为,则_________;若对于恒成立,则实数的取值范围是___________.6.(2022·上海·华东师范大学附属东昌中学高三阶段练习)设函数,.(1)若,求实数的取值范围;(2)若为正整数,设的解集为,求及数列的前项和;试卷第8页,共1页学科网(北京)股份有限公司 (3)对于(2)中的数列,设,求数列的前项和的最大值.试卷第8页,共1页学科网(北京)股份有限公司 试卷第8页,共1页学科网(北京)股份有限公司
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023年新高考一轮复习讲义第01讲 集合的概念与运算(原卷版)
2023年新高考一轮复习讲义第09讲 函数性质的综合问题(原卷版)
2023年新高考一轮复习讲义第13讲 函数的图象(原卷版)
2023年新高考一轮复习讲义第14讲 函数与方程(原卷版)
2023年新高考一轮复习讲义第15讲 函数模型及其应用(原卷版)
2023年新高考一轮复习讲义第29讲 解三角形应用举例及综合问题(原卷版)
2023年新高考一轮复习讲义第32讲 平面向量的数量积及应用举例(原卷版)
2023年新高考一轮复习讲义第34讲 数列的概念及简单表示法(原卷版)
2023年新高考一轮复习讲义第37讲 数列求和(原卷版)
2023年新高考一轮复习讲义第38讲 数列的综合应用(解析版)
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-10-12 09:08:02
页数:8
价格:¥3
大小:336.97 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划