首页

第九章不等式与不等式组9.1不等式9.1.2不等式的性质第1课时不等式的性质导学案(人教版七下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

9.1不等式9.1.2不等式的性质第1课时不等式的性质一、导1.导入课题:在上节课,我们学习了什么是不等式,对于某些简单的不等式,我们可以直接写出它的解集.如不等式x+3>6的解集是x>3,不等式2x<8的解集是x<4.但是对于比较复杂的不等式,与解方程需要依据等式的性质一样,解不等式需要依据不等式的性质.这节课我们就来探讨不等式有什么性质.(板书课题)2.学习目标:(1)探索并理解不等式的性质、体会探索过程中所应用的归纳和类比方法.(2)能运用不等式的性质对不等式进行变形和解简单的不等式.(3)知道符号“≥”和“≤”的意义及数轴表示不等式的解集时实心点与空心圈的区别.3.学习重、难点:重点:不等式的性质及其运用.难点:不等式的性质3的探索与理解.4.自学指导:(1)自学内容:课本P116至P117“练习”之前的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,思考相关问题,运用类比和归纳的方法得出不等式的性质.(4)自学参考提纲:①等式有哪些性质?分别用文字语言和符号语言把它表示出来.②类比等式性质1,我们来看下列问题:a.用“>”或“<”完成下列两组填空:第一组:5>3,5+2>3+2,5-2>3-2,5+0>3+0.第二组:-1<3,-1+2<3+2,-1-2<3-2,-1+0<3+0.b.你能发现a中的规律吗?(注意观察不等式中不等号的方向是否改变)c.由于减去一个数等于加上这个数的相反数,比较等式性质1,归纳出不等式的性质1.d.换一些其他的数验证不等式的性质1.②类比等式性质2,我们来看下列问题:a.用“>”或“<”完成下列两组填空:3 第一组:6>2,6×5>2×5,6×(-5)<2×(-5).第二组:-2<3,(-2)×6<3×6,(-2)×(-6)>3×(-6).b.你能发现a中的规律吗?(注意观察不等式中不等号的方向是否改变)c.由于除以一个不为零的数等于乘以这个数的倒数,比较等式性质2,归纳出不等式的性质2和性质3.d.换一些其他的数验证不等式的性质2和性质3.二.自学同学们可结合自学指导进行学习.三.助学(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况(主要是自学的进度和存在的问题:归纳不等式性质时是否有符号语言表述;验证时选例是否正确、合理等).②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流研讨,互帮互学.四.强化:(1)不等式的性质(用表格形式与等式的性质对照呈现出来).(2)初步运用:设a>b.用“>”或“<”填空,并说明依据的是不等式的哪条性质.①a+2>b+2;②a-3>b-3;③-4a<-4b;④>;⑤a+m>b+m;⑥-3.5a+1<-3.5b+1.五、评价1.学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(如态度、方法、效率、效果及存在的问题等)进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课通过类比等式的性质,结合生活中的实例组织学生探索,得到不等式的三个性质.在探索中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,小组讨论又锻炼了学生的创造性和合作性,为后面的学习打下了一定的基础.(时间:12分钟满分:100分)3 一、基础巩固(60分)1.(20分)填空:(1)如果a≤b,那么a±c≤b±c;(2)如果a≤b,且c>0,那么ac≤bc(或≤);(3)如果a≤b,且c<0,那么ac≥bc(或≥).2.(15分)若-2a<-2b,则a<b,根据是(C)A.不等式的基本性质1B.不等式的基本性质2C.不等式的基本性质3D.等式的基本性质23.(15分)若m>n,下列不等式一定成立的是(B)A.m-2>n+2B.2m>2nC.->D.m2>n24.(15分)判断下列各题的结论是否正确.(1)若b-3a<0,则b<3a;(2)如果-5x>20,那么x>-4;(3)若a>b,则ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则a(c2+1)>b(c2+1);(6)若a>b>0,则<.解:(1)(4)(5)(6)正确,(2)(3)错误.二、综合运用(20分)5.(10分)设m>n,用“>”或“<”填空:(1)2m-5>2n-5;(2)-1.5m+1<-1.5n+1.6.(10分)已知某机器零件的设计图纸中标注的零件长度L的合格尺寸为:L=40±0.02(单位:mm).那么用不等式表示零件长度L的取值范围是39.98mm≤L≤40.02mm.三、拓展延伸(20分)7.(1)小明说不等式a>2a永远不会成立,因为如果在这个不等式两边用除以a,就会出现1>2这样错误结论,他的说法对吗?(2)比较-a与-2a的大小.解:(1)他的说法不对,他未考虑a<0时的情况;(2)当a>0时,∴a<2a,∴-a>-2a.当a=0时,-a=-2a.当a<0时,∴a>2a,∴-a<-2a.3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-09-06 16:50:01 页数:3
价格:¥1 大小:150.50 KB
文章作者:随遇而安

推荐特供

MORE