首页

初升高数学全体系衔接专题05二次函数的三种表示方式(学生版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/10

2/10

剩余8页未读,查看更多内容需下载

专题05二次函数的三种表示方式专题综述课程要求二次函数是初中数学的一个重要内容,是中考重点考查的内容,也是高考必考内容,同时还是一个研究函数性质的很好的载体,因此做好二次函数的初高中衔接至关重要,初中阶段对二次函数的要求,是立足于用代数方法来研究,比如配方结合顶点式,描述函数图象的某些特征(开口方向、顶点坐标、对称轴、最值)等;再比如待定系数法,通过解方程组的形式来求二次函数的解析式.高中的函数立足于集合观点,对二次函数的学习要求明显提高,二次函数的研究更侧重于数形结合、分类讨论等思想方法.课程要求《初中课程要求》了解了一些简单函数图象的变换,如左加右减之类的水平平移,还了解了些简单的对称变换《高中课程要求》掌握各种平移变换,如左加右减的水平平移,上加下减的垂直平移,还要掌握各种对称变换,特別是关于原点、坐标轴的对称变换知识精讲高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y=ax2+bx+c(a≠0);高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y=a(x-h)2+k(a≠0),其中顶点坐标是(h,k).高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.,典例剖析高中必备知识点1:一般式【典型例题】已知抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(﹣3,0),(0,﹣3).(1)求抛物线的表达式.(2)已知点(m,k)和点(n,k)在此抛物线上,其中m≠n,请判断关于t的方程t2+mt+n=0是否有实数根,并说明理由.【变式训练】抛物线的图象如下,求这条抛物线的解析式。(结果化成一般式)【能力提升】如图,在平面直角坐标系中,抛物线y1=12x2先向右平移2个单位,再向下平移2个单位,得到抛物线y2.(1)求抛物线y2的解析式(化为一般式);(2)直接写出抛物线y2的对称轴与两段抛物线弧围成的阴影部分的面积.,高中必备知识点2:顶点式【典型例题】已知二次函数.⑴用配方法将此二次函数化为顶点式;⑵求出它的顶点坐标和对称轴方程.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式.【能力提升】二次函数的图象经过点,,.(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移个单位,使得该图象的顶点在原点.高中必备知识点3:交点式【典型例题】已知在平面直角坐标系中,二次函数y=x2+2x+2k﹣2的图象与x轴有两个交点.(1)求k的取值范围;(2)当k取正整数时,请你写出二次函数y=x2+2x+2k﹣2的表达式,并求出此二次函数图象与x轴的两个交点坐标.【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【能力提升】,已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.对点精练1.已知抛物线(,,是常数,)经过点,其对称轴为直线.有下列结论:①;②;③关于的方程有两个不等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在和之间,对称轴是直线.对于下列说法中,错误的是()A.B.C.D.(为实数)3.已知抛物线与x轴有两个交点,现有如下结论:①,此抛物线过定点;②若抛物线开口向下,则m的取值范围是;③若时,有,,则m的取值范围是.其中正确结论的个数是()A.0B.1C.2D.34.二次函数为常数,且)中的x与y的部分对应值如表:x-1013y-1353下列结论:①;②当时,的值随值的增大而减小;③当时,函数有最值;④是方程的一个根;⑤当时,.其中结论正确的有()A.2个B.3个C.4个D.5个5.如图是抛物线,其顶点坐标为,且与x轴的一个交点在点和之间,下列结论:①;②;③;④;⑤关于x的方程的另一个解在和之间,其中正确结论的个数是()A.1个B.2个C.3个D.4个6.二次函数的最大值为,且中只有两点不在该二次函数图象上,下列关于这两点的说法正确的是(),A.这两点一定是M和NB.这两点一定是Q和RC.这两点可能是M和QD.这两点可能是P和Q7.二次函数的图象与一次函数的图象没有交点,则b的取值范围是()A.B.C.或D.8.函数(a,b,c为常数,)的图象与x轴交于点,顶点坐标为,其中.有下列结论:①;②函数在和处的函数值相等;③点,在函数的图象上,若,则.其中,正确结论的个数是()A.0B.1C.2D.39.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是直线,对于下列说法:①;②;③3;④当时,;⑤(为实数).其中正确的是()A.①②③B.①②⑤C.②③④D.③④⑤10.已知抛物线y=-x2+(6-2m)x-m2+3的对称轴在y轴的右侧,当x>2时,y的值随着x值的增大而减小,点P是抛物线上的点,设P的纵坐标为t,若t≤3,则m的取值范围是()A.m≥B.≤m<3C.m<3D.1≤m<311.已知二次函数y=4x2﹣mx+5,当x≤﹣2时,y随x的增大而减小;当x≥﹣2时,y随x的增大而增大,则当x=1时,y的值为_____.12.抛物线一定经过非坐标轴上的一点,则点的坐标为___________.13.抛物线图象与轴无交点,则的取值范围为;,14.抛物线y=ax2+ax+2(a≠0)的对称轴是直线_____.15.二次函数的图象如图所示,则下列四个结论:①;②;③;④.其中正确的有______.(填写番号)16.从,,,2,5中任取一数作为a的值,能使抛物线的开口向下的概率为__________.17.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断:①abc>0;②b2﹣4ac>0;③5a﹣2b+c<0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确判断的序号是_____.18.二次函数,当时,的最小值为1,则的取值范围是________.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2,其中正确的结论有_____.,20.抛物线的顶点为,与轴的一个交点在点和之间,则以下结论:①;②;③;④方程有两个不相等的实数根,其中正确结论为__________.21.在平面直角坐标系中,已知抛物线.(1)当时,①抛物线的对称轴为______;②若在抛物线上有两点,,且,则的取值范围是______;(2)抛物线的对称轴与轴交于点,点与点关于轴对称,将点向右平移3个单位得到点,若抛物线与线段恰有一个公共点,结合图象,求的取值范围.22.平面直角坐标系中,函数(为常数)的图象与轴交于点.(1)直接写出点坐标.(2)当此函数图象经过点时,求此函数表达式,并写出函数随增大而增大时的取值范围.(3)当时,若函数(为常数)图象最低点到直线的距离为3,求的值.,23.已知函数(,为常数).当时,,当时,,请对该函数及其图象进行探究:(1)___________,___________;(2)请在给出的平面直角坐标系中画出该函数图象,并结合所画图象,写出该函数的一条性质.(3)已知函数的图象如图所示,结合图象,直接写出不等式的解集.24.已知二次函数(是常数).(1)若该函数图像与轴有两个不同的公共点,求的取值范围;(2)求证:不论为何值,该函数图像的顶点都在函数的图像上;(3),是该二次函数图像上的点,当时,都有,则的取值范围是___________.25.已知抛物线.(1)求此抛物线的对称轴;(2)若此抛物线的顶点在直线上,求抛物线的解析式;(3)若点与点在此抛物线上,且,求a的取值范围.26.已知抛物线.,(1)求该抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)当时,若为该抛物线上三点,且总有,请结合图象直接写出m的取值范围.27.在平面直角坐标系中,已知抛物线与直线有且只有一个公共点.(1)直接写出抛物线的顶点的坐标,并求出与的关系式;(2)若点为抛物线上一点,当时,均满足,求的取值范围;(3)过抛物线上动点(其中)作轴的垂线,设与直线交于点,若、两点间的距离恒大于等于1,求的取值范围.28.已知抛物线经过点和点,顶点为.(1)求、的值;(2)若的坐标为,当时,二次函数有最大值,求的值;(3)直线与直线、直线分别相交于、,若抛物线与线段(包含、两点)有两个公共点,求的取值范围.29.在平面直角坐标系中,函数y=x2-2ax-1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2-2ax-1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.30.已知二次函数y=ax2+bx+c的图象经过A(n,b),B(m,a)且m﹣n=1.(1)当b=a时,直接写出函数图象的对称轴;(2)求b和c(用只含字母a、n的代数式表示);(3)当a<0时,函数有最大值﹣1,b+c≥a,n≤,求a的取值范围.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-08-12 03:36:02 页数:10
价格:¥5 大小:924.17 KB
文章作者:180****8757

推荐特供

MORE