首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
2022高考压轴卷--数学(新高考II卷)Word版含解析
2022高考压轴卷--数学(新高考II卷)Word版含解析
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022新高考II卷高考压轴卷数学word版含解析一.选择题:本题共12个小题,每个小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x||x-1|<1},N={x|x<2},则M∩N=()A.(-1,1)B.(-1,2)C.(0,2)D.(1,2)2.设i是虚数单位,若复数(m∈R)是纯虚数,则m的值为( )A.﹣3B.3C.1D.﹣13.在的二项展开式中,x的系数为()A.40B.20C.-40D.-204.执行如图所示的程序框图,则输出的k=A.3B.4C.5D.65.若变量x,y满足,则z=2x+y的最大值是( )A.2B.4C.5D.66.“割圆术”是我国古代计算圆周率的一种方法.在公元263年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求.当时刘微就是利用这种方法,把的近似值计算到3.1415和3.1416之间,这是当时世界上对圆周率的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与\n圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正二十四边形来估算圆周率,则的近似值是()(精确到0.01)(参考数据)A.3.05B.3.10C.3.11D.3.147.如图,在△ABC中,D为BC中点,E在线段上,且,则()A.B.C.D.8.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(1,f(1))处的切线方程为( )A.y=﹣2xB.y=4x﹣2C.y=2xD.y=﹣4x+2二.多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得2分,有选错的得0分.9.已知直线与圆,点,则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离\nC.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切10.已知数列{an}的前n项和为Sn,下列说法正确的是()A.若,则{an}是等差数列B.若,则{an}是等比数列C.若{an}是等差数列,则D.若{an}是等比数列,且,,则11.已知椭圆的左、右焦点分别为,且,点在椭圆内部,点Q在椭圆上,则以下说法正确的是()A.的最小值为B.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围为D.若,则椭圆C的长轴长为12.如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D1上的两个动点,且EF=,则下列结论中正确的是( )A.AC⊥BEB.EF∥平面ABCDC.△AEF的面积与△BEF的面积相等D.三棱锥E﹣ABF的体积为定值\n三.填空题:本题共4个小题,每个小题5分,共20分.13.因新冠肺炎疫情防控需要,某医院呼吸科准备从5名男医生和4名女医生中选派3人前往隔离点进行核酸检测采样工作,选派的三人中至少有1名女医生的概率为 .14.在△ABC中,,M是BC的中点,,则___________,___________.15.设{an}为等比数列,其前n项和为Sn,a2=2,S2﹣3a1=0.则{an}的通项公式是 ;Sn+an>48,则n的最小值为 .16.己知A、B为抛物线上两点,直线AB过焦点F,A、B在准线上的射影分别为C、D,则①轴上恒存在一点K,使得;②;③存在实数使得(点O为坐标原点);④若线段AB的中点P在准线上的射影为T,有.中正确说法的序号________.四.解答题:本题共5个小题,第17-21题没题12分,解答题应写出必要的文字说明或证明过程或演算步骤.17.△ABC的内角A、B、C的对边分别为a、b、c,已知,△ABC的面积为.(1)若,求△ABC的周长;(2)求的最大值.18.某县种植的脆红李在2021年获得大丰收,依据扶贫政策,所有脆红李由经销商统一收购.为了更好的实现效益,质监部门从今年收获的脆红李中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.下表是脆红李的分级标准,其中一级品、二级品统称为优质品.等级四级品三级品二级品一级品脆红李横径/mm\n经销商与某农户签订了脆红李收购协议,规定如下:从一箱脆红李中任取4个进行检测,若4个均为优质品,则该箱脆红李定为A类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱脆红李也定为A类;若4个中至多有一个优质品,则该箱脆红李定为C类;其他情况均定为B类.已知每箱脆红李重量为10千克,A类、B类、C类的脆红李价格分别为每千克10元、8元、6元.现有两种装箱方案:方案一:将脆红李采用随机混装的方式装箱;方案二:将脆红李按一、二、三、四等级分别装箱,每箱的分拣成本为1元.以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱脆红李被定为A类的概率;(2)根据统计学知识判断,该农户采用哪种方案装箱收入更多,并说明理由.19.如图,四棱锥P﹣ABCD中,AB∥DC,∠ADC=,AB=AD=CD=2,PD=PB=,PD⊥BC.(1)求证:平面PBD⊥平面PBC;(2)在线段PC上存在点M,使得,求平面ABM与平面PBD所成锐二面角的大小.20.已知椭圆C1:的长轴长为4,右焦点为F(c,0),且F\n恰好是抛物线C2:y2=2px(p>0)的焦点.若点P为椭圆C1与抛物线C2在第一象限的交点,△OPF(O为坐标原点)重心的横坐标为,且S△OPF=c.(1)求p的值和椭圆C1的标准方程;(2)若p为整数,点M为直线x=上任意一点,连接MF,过点F作MF的垂线l与椭圆C1交于A,B两点,若|MF|=|AB|,求直线l的方程.21.已知函数有两个极值点.(1)求a的取值范围;(2)求证:且.选考题:共10分,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.[选修4-4:参数方程与极坐标]在平面直角坐标系xOy中,曲线的参数方程为(为参数),若曲线上的点的横坐标不变,纵坐标缩短为原来的倍,得到曲线.以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)已知直线l:与曲线交于A,B两点,若,求k的值.23.[选修4-5:不等式选讲]已知函数f(x)=|x+a|﹣2|x﹣b|(a>0,b>0).(1)当a=b=1时,解不等式f(x)>0;(2)若函数g(x)=f(x)+|x﹣b|的最大值为2,求的最小值.\n2022新高考II卷高考压轴卷数学word版含解析参考答案1.【答案】C【解析】,故选:C2.【答案】C【解析】解:∵=m+=m+=(m﹣1)+i是纯虚数,∴m﹣1=0,即m=1.故选:C.3.【答案】C【解析】解:的二项展开式的通项公式为,令,解得,故的系数为,故选:C.4.【答案】B【解析】\n5.【答案】C【解析】解:由约束条件作出可行域如图,联立,解得A(2,1),由z=2x+y,得y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,z有最大值为5.故选:C.6.【答案】C【解析】解:设圆的半径为,以圆心为顶点将正二十四边形分割成全等的24个等腰三角形且顶角为所以正二十四边形的面积为所以故选:C7.【答案】B【解析】为的中点,则,\n,,.故选:B.8.【答案】B【解析】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,f(1)=2;曲线y=f(x)在点(1,2)处的切线的斜率为:4,则曲线y=f(x)在点(1,2)处的切线方程为:y﹣2=4(x﹣1).即y=4x﹣2.故选:B.9.【答案】ABD【解析】解:圆心到直线l的距离,若点在圆C上,则,所以,则直线l与圆C相切,故A正确;若点在圆C内,则,所以,则直线l与圆C相离,故B正确;若点在圆C外,则,所以,则直线l与圆C相交,故C错误;若点在直线l上,则即,所以,直线l与圆C相切,故D正确.故选:ABD.\n10.【答案】BC【解析】解:若,当时,,不满足,故A错误.若,则,满足,所以是等比数列,故B正确.若是等差数列,则,故C正确.,故D错误.11.【答案】ACD【解析】解:A.因为,所以,所以,当,三点共线时,取等号,故正确;B.若椭圆的短轴长为2,则,所以椭圆方程为,,则点在椭圆外,故错误;C.因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以,所以椭圆的离心率的取值范围为,故正确;D.若,则为线段的中点,所以,所以,又,即,解得,所以\n,所以椭圆的长轴长为,故正确.故选:ACD12.【答案】ABD【解析】解:由正方体的结构特征可知,DD1⊥平面ABCD,而AC⊂平面ABCD,则D1D⊥AC,又ABCD为正方形,∴AC⊥BD,∵D1D∩BD=D,且D1D、BD⊂平面DD1B1B,∴AC⊥平面DD1B1B,∵BE⊂平面DD1B1B,∴AC⊥BE,故A正确;∵B1D1∥BD,BD⊂平面ABCD,B1D1平面ABCD,∴BD∥平面ABCD,而EF在B1D1上,∴EF∥平面ABCD,故B正确;点B到EF的距离为正方体的棱长,A到EF的距离大于棱长,则△AEF的面积与△BEF的面积不相等,故C错误;如图所示,连接BD,交AC于O,则AO为三棱锥A﹣BEF的高,•EF•BB1=××1=,=×=,则为定值,故D正确.故选:ABD.13.【答案】【解析】解:某医院呼吸科准备从5名男医生和4名女医生中选派3人前往隔离点进行核酸检测采样工作,\n基本事件总数n==84,选派的三人中至少有1名女医生包含的基本事件总数m==74,∴选派的三人中至少有1名女医生的概率P===.故答案为:.14.【答案】;【解析】解:由题意作出图形,如图,在中,由余弦定理得,即,解得(负值舍去),所以,在中,由余弦定理得,所以;在中,由余弦定理得.故答案为:;.\n15.【答案】an=2n﹣1,6【解析】解:设等比数列{an}的公比为q,则a1q=2,S2﹣3a1=a2+a1﹣3a1=0,解得,a1=1,q=2,故an=1×2n﹣1=2n﹣1,Sn==2n﹣1,Sn+an=2n﹣1+2n﹣1>48,即3•2n﹣1>49,故n的最小值为6,故答案为:an=2n﹣1,6.16.【答案】①②③④.【解析】解:设直线方程为,,,,,则由得,所以.对于①,设,所以,,当时,,所以①正确.对于②,由抛物线定义可知:,,轴,所以,,所以,即;所以②正确.\n对于③,,即存在实数使得;所以③正确.对于④,因为,由于,若则,所以;若显然;所以④正确故答案为:①②③④.17.【答案】(1);(2).【解析】解:(1)因为,所以,由余弦定理得,所以,又,,所以,即,故△ABC的周长为;(2)由正弦定理得,所以,又,,所以.\n当时,,此时,,即,;或,.故时,取得最大值.18.【答案】(1)(2)采用方案二时收入更多,理由见解析【解析】解:(1)由频率分布直方图可得任取一只脆红李,其为优质品的概率为,设事件为“该农户采用方案一装箱,一箱脆红李被定为A类”,则.(2)设该农户采用方案一时每箱收入为,则可取,而,,,故(元)该农户采用方案二时,每箱的平均收入为,因为,故采用方案二时收入更多.19.【答案】【解析】(1)证明:因为四边形ABCD是直角梯形,且AB∥DC,∠ADC=,AB=AD=2,所以BD=,又CD=4,∠BDC=45°,由余弦定理可得,BC=,所以CD2=BD2+BC2,故BC⊥BD,\n又因为BC⊥PD,PD∩BD=D,PD,BD⊂平面PBD,所以BC⊥平面PBD,又因为BC⊂平面PBC,所以平面PBD⊥平面PBC;(2)设E为BD的中点,连结PE,因为PB=PD=,所以PE⊥BD,PE=2,由(1)可得平面ABCD⊥平面PBD,平面ABCD∩平面PBD=BD,所以PE⊥平面ABCD,以点A为坐标原点,建立空间直角坐标系如图所示,则A(0,0,0),B(0,2,0),C(2,4,0),D(2,0,0),P(1,1,2),因为,所以,所以,平面PBD的一个法向量为,设平面ABM的法向量为,因为,,则有,即,令x=1,则y=0,z=﹣1,故,所以,故平面ABM与平面PBD所成锐二面角的大小为.20.【答案】【解析】解:(1)因为椭圆C1的长轴长为4,所以2a=4,a=2,\n又椭圆C1的右焦点F(c,0)恰好是抛物线C2的焦点,所以.设P(x0,y0),则由题意得,解得,又P在抛物线C2上,所以,即3p2﹣10p+8=0,解得或p=2.从而或c=1,又a=2,所以或b2=3,所以椭圆C1的标准方程为或.(2)因为p为整数,所以p=2,c=1,所以椭圆C1的标准方程为,直线即直线x=4.设M(4,t),则,因为直线AB过点F,且与MF垂直,所以直线,设A(x1,y1),B(x2,y2),联立方程,得,消去x,整理得(t2+12)y2﹣6ty﹣27=0,由根与系数的关系,得,,所以,又,所以,解得t=±3,所以直线l的方程为x﹣y﹣1=0或x+y﹣1=0.21.【答案】(1);(2)证明见解析.\n【解析】解:(1),即方程有两相异正根,即方程有两相异正根,由图象可知.(2)要证,只要证,、为方程的两根,,.只要证;只要证;为方程的较大根,.令.,;在上单调减,所以恒成立;在上单调减,.22.【答案】(1)(2)【解析】(1)解:由消去参数得曲线的普通方程为,曲线上的点的横坐标不变,纵坐标缩短为原来的倍,则曲线得直角坐标方程,即,即,因为,\n所以,所以曲线的极坐标方程为;(2)解:设,则为方程得两根,则①,②,因为,所以③,由①②③解得,所以,所以直线l的斜率.23.【答案】【解析】解:(1)当a=b=1时,f(x)=|x+1|﹣2|x﹣1|,①当x≤﹣1时,f(x)=﹣(x+1)+2(x﹣1)=x﹣3>0,∴x>3,∴无解,②当﹣1<x<1时,f(x)=(x+1)+2(x﹣1)=3x﹣1>0,∴<x<1,③当x≥1时,f(x)=(x+1)﹣2(x﹣1)=﹣x+3>0,∴1≤x<3,综上所述:不等式f(x)>0的解集为(,3).(2)g(x)=)=|x+a|﹣2|x﹣b|+|x﹣b|=|x+a|﹣|x﹣b|,∵|x+a|﹣|x﹣b|≤|(x+a)﹣(x﹣b)|=|a+b|,∴g(x)max|=|a+b|=2,∵a>0,b>0,∴a+b=2,∴+=(+)(a+b)×=(++5)×≥(2+5)×=,当且仅当=,即b=2a时取等号,∴+的最小值为.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022高考压轴卷英语(新高考全国I卷)Word版含解析
2022高考压轴卷英语(新高考全国II卷)Word版含解析
2022高考压轴卷--数学(新高考I卷)Word版含解析
2022高考压轴卷--数学(文)(全国乙卷)Word版含解析
2022高考压轴卷--数学(文)(全国甲卷)Word版含解析
2022高考压轴卷--数学(理)(全国乙卷)Word版含解析
2022高考压轴卷--数学(理)(全国甲卷)Word版含解析
2022高考压轴卷--语文(新高考I卷)Word版含解析
2022高考压轴卷--语文(新高考II卷)Word版含解析
2022高考压轴卷--语文(全国乙卷)Word版含解析
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-05-31 17:51:41
页数:19
价格:¥3
大小:1.07 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划