首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案)
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/14
2
/14
剩余12页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022年普通高等学校招生全国统一考试模拟(上海卷)数学注意事项:1.本场考试时间120分钟,满分150分.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名.将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区城,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合,,且,则实数的值是___________.【解析】因为,所以,,当时,无意义,不满足题意;当时,,满足题意;当时,,不满足题意.综上,实数的值1.2.已知复数、满足,若和的幅角之差为,则___________.【解析】因为,设,,所以,由题意可知或, 当时,,,当时,,,综上所述:3.已知,,则______【解析】由已知可得,故.4.已知点为正四面体的外接球上的任意一点,正四面体的棱长为2,则的取值范围为___________.【解析】如图,将正四面体放在正方体内,并建立如图所示的空间直角坐标系,∵正四面体的棱长为2,则正方体的棱长为,正四面体ABCD的外接球即为图中正方体的外接球,其半径为R,则,则,,设,则,则, ∵,,∴.5.设且,则的展开式中常数项为_______.【解析】的通项公式为,,的常数项为:.6.若函数的反函数的图像经过点,则____________.【解析】由于函数的反函数的图象经过点,则,解得,∴函数,∴.7.已知、、、…、是抛物线上不同的点,点,若,则___________【解析】设,分别过,作抛物线的准线的垂线,垂足分别为,、、、…、是抛物线上不同的点,点,准线为,.,, .8.从集合中任取3个不同元素分别作为直线方程中的,则经过坐标原点的不同直线有__________条(用数值表示)【解析】依题意,,从任取两个不同元素分别作为的值有种,其中重合的直线,按有序数对,有:重合,重合,重合,重合,重合,有:重合,重合,重合,重合,重合,所以经过坐标原点的不同直线条数是.9.已知实数m>1,实数x、y满足不等式组,若目标函数z=x+my的最大值等于10,则m=___________.【解析】由约束条件作出可行域如图内的整数点(含边界线上的整数点),联立,解得A(3,3),⇒B(,),化目标函数z=x+my为,由图可知,当直线过B时,直线在y轴上的截距最大,但B不是整数点, 因为:0≤x≤3,,故当y=4,x=2时,z有最大值为2+4m=10,即m=2.10.若,且,则的取值范围是__________.【解析】由题意,,,由于,故,即,,,故,解得:或11.平面直角坐标系中,满足到的距离比到的距离大的点的轨迹为曲线,点(其中,)是曲线上的点,原点到直线的距离为,则____________.【解析】设曲线上的点为,由题意,,则曲线为双曲线的右支,焦点坐标为,,,,,,双曲线方程为.所以渐近线方程为,而点(其中,是曲线上的点,当时,直线的斜率趋近于,即.则,即..12.任意实数a,b,定义,设函数,正项数列是公比大于0的等比数列,且,则=____.【解析】由题意,因为时,; 当时,;时,,所以时,恒成立;因为正项数列是公比大于0的等比数列,且,所以,所以,又,,所以;当时,,所以,此时无解;设恒成立,在单调递增,当时,,所以,解得.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.在数列中,已知,则“”是“是单调递增数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】已知,若,即,解得.若数列是单调递增数列,对任意的,,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”的充要条件.故选:C.14.下列不等式恒成立的是( )A.B.C.D.【解析】对于选项A,()﹣(x+)=﹣(x+)=,而 x+≥2或x+≤﹣2,令t=x+∈(﹣∞,﹣2]∪[2,+∞),则()﹣(x+)=≥0,所以≥x+,故A正确;对于选项B,当x﹣y=﹣2时,|x﹣y|=2,所以|x﹣y|+=2﹣=<2,故B错误;对于选项C,因为|x﹣y|=|(x﹣z)﹣(y﹣z)|≤|x﹣z|+|y﹣z|,故C错误;对于选项D,因为﹣=(x+3)+(x﹣1)﹣2﹣[x+2+x﹣2]=2﹣2=2()>0,所以D错误.故选:A.15.如图,在棱长为1的正方体中,P、Q、R分别是棱AB、BC、的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为( )A.B.C.D.【解析】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又, 所以平面PQR,所以三棱柱是直三棱柱,因为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C16.已知数列满足,则下列选项错误的是( )A.数列单调递增B.数列无界C.D.【解析】,所以数列单调递增,恒成立,故A,B正确;,,所以,所以,故C正确:因为,所以,结合数列单调递增,所以,故D错误,故选:D.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本小题满分14分,第1小题满分6分,第2小题满分8分)如图,直三棱柱中,,,点D是BC的中点.(1)求三棱锥的体积; (2)求异面直线与所成角的大小.(结果用反三角函数值表示)【解析】(1)由题意得所以三棱锥的体积.即所求三棱锥的体积为.(2)连接,由题意得,,且,所以直线与所成的角就是异面直线与所成的角.在中,,,,由余弦定理得,因为,所以.因此所求异面直线与所成角的大小为.18.(本小题满分14分.第1小题满分6分,第2小题满分8分)落户上海的某休闲度假区预计于2022年开工建设.如图,拟在该度假园区入口处修建平面图呈直角三角形的迎宾区,,迎宾区的入口设置在点A处,出口在点B处,游客可从入口沿着观景通道A-C-B到达出口,其中米,米,也可以沿便捷通道A-P-B到达出口(P为△ABC内一点).(1)若△PBC是以P为直角顶点的等腰直角三角形,某游客的步行速度为每分钟50米,则该游客从入口步行至出口,走便捷通道比走观景通道可以快几分钟?(结果精确到1分钟) (2)园区计划将△PBC区域修建成室外游乐场,若,该如何设计使室外游乐场的面积最大,请说明理由.【解析】(1)由题设,米,米,在中,由余弦定理得,于是米.游客可从入口沿着观景通道A-C-B到达出口,所需时间为分钟,游客沿便捷通道A-P-B到达出口所需时间为分钟,所以该游客从入口步行至出口,走便捷通道比走观景通道可以快分钟.(2),设则,在中,.由正弦定理得,得.所以面积,当时,面积的最大值为平方米.19.(本小题满分14分,第1小题满分6分,第2小题满分8分)有人玩掷硬币走跳棋的游戏,已知硬币出现正反面为等可能性事件,棋盘上标有第0站,第1站,第2站,……,第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋向前跳一站(从k到),若掷出反面,棋向前跳两站(从k到),直到棋子跳到第99站(胜利大本营)或跳到第100站(失败集中营)时,该游戏结束.设棋子跳到第n站概率为.(1)求,,的值;(2)求证:,其中,,并求及的值.【解析】(1)棋子开始在第0站为必然事件,∴. 第一次掷硬币出现正面,棋子跳到第1站,其概率为,∴.棋子跳到第2站应从如下两方面考虑:①前两次掷硬币都出现正面,其概率为;②第一次掷硬币出现反面,其概率为.∴.(2)证明:棋子跳到第n()站的情况是下列两种,而且也只有两种:①棋子先到第站,又掷出反面,其概率为;②棋子先到第站,又掷出正面,其概率为.∴.∴.当时,数列是首项为,公比为的等比数列.∴,,,…,.以上各式相加,得,∴.∴,.20.(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知为椭圆C:内一定点,Q为直线l:上一动点,直线PQ与椭圆C交于A、B两点(点B位于P、Q两点之间),O为坐标原点.(1)当直线PQ的倾斜角为时,求直线OQ的斜率;(2)当AOB的面积为时,求点Q的横坐标; (3)设,,试问是否为定值?若是,请求出该定值;若不是,请说明理由.【解析】(1)因为直线PQ的倾斜角为,且,所以直线PQ的方程为:,由,得,所以直线OQ的斜率是;(2)易知直线PQ的斜率存在,设直线PQ的方程为,由,得,设,则,所以,所以,解得,即,所以直线PQ的方程为或,由,得;由,得;(3)易知直线PQ的斜率存在,设直线PQ的方程为,由,得,设,则,所以,因为,,所以,所以,.21.(本小题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数的定义域为,若存在常数和,对任意的,都有 成立,则称函数为“拟线性函数”,其中数组称为函数的拟合系数.(1)数组是否是函数的拟合系数?(2)判断函数是否是“拟线性函数”,并说明理由;(3)若奇函数在区间上单调递增,且的图像关于点成中心对称(其中为常数),证明:是“拟线性函数”.【解析】(1)因为所以当,当时,因为或,所以,所以数组是函数的拟合系数.(2)①当时,对于恒成立,所以成立,②当时,恒成立,所以成立,由①②可知,不能同时满足,所以函数不是“拟线性函数”.(3)的图像关于点成中心对称,,令x=0,得:,由于在区间上递增,,,为奇函数,,时,,记,下面证明对一切,都有,为奇函数,,,即,由于是周期函数,且一个周期为,因为当时,,,又因此时,当,,,由于均为奇函数,也为奇函数, 当时,,也成立,综合得:时,,当时,,,因此,对一切,都有,即恒成立.所以是“拟线性函数”.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2020年普通高等学校招生全国统一考试数学卷 (上海卷)(word含解析)
2022年普通高等学校招生全国统一考试模拟(北京卷)数学试题(Word版附答案)
2022年普通高等学校招生全国统一考试模拟(天津卷)数学试题(Word版附答案)
2022年普通高等学校招生全国统一考试模拟理科数学(甲卷)试题(Word版附答案)
2022年普通高等学校招生全国统一考试模拟理科数学(乙卷)试题(Word版附答案)
2022年普通高等学校招生全国统一考试模拟新高考数学I卷(Word版附答案)
2022年普通高等学校招生全国统一考试模拟(浙江卷)数学试题(Word版附答案)
2022年普通高等学校招生全国统一考试模拟文科数学(甲卷)试题(Word版附答案)
2022年普通高等学校招生全国统一考试模拟新高考数学II卷(Word版附答案)
普通高等学校招生全国统一考试数学试题浙江卷
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-04-04 20:00:02
页数:14
价格:¥3
大小:904.95 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划