首页

【2022备考】高考数学各地名校试题解析分类汇编(一)5 三角2 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/17

2/17

剩余15页未读,查看更多内容需下载

各地解析分类汇编:三角函数21【云南省昆明一中2022届高三新课程第一次摸底测试理】在△ABC中的内角A、B、C所对的边分别为a,b,c,若则△ABC的形状为A.直角三角形B.锐角三角形C.等边三角形D.等腰直角三角形【答案】C【解析】由正弦定理得,即,即,所以,同理可得,所以三角形为等边三角形,选C.2.【云南省昆明一中2022届高三新课程第一次摸底测试理】函数的简图是【答案】B【解析】将的图象向左平移个单位得到函数的图象,选B.3.【云南省昆明一中2022届高三新课程第一次摸底测试理】化简则A.B.C.D.【答案】A【解析】,所以,选A.-17-\n4.【云南省玉溪一中2022届高三第三次月考理】函数为增函数的区间是()A.B.C.D.【答案】C【解析】因为,由,解得,即函数的增区间为,所以当时,增区间为,选C.5.【云南省玉溪一中2022届高三第四次月考理】已知函数的图象如图所示,则等于()A.B.C.D.【答案】C【解析】由图象可知,所以,又,所以,选C.6.【云南省玉溪一中2022届高三第四次月考理】在中,若,则的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】B【解析】由正弦定理可知由,因为,所以,因为,所以-17-\n,所以,即.同理可得,所以三角形为等边三角形,选B.7.【云南省玉溪一中2022届高三上学期期中考试理】函数的最大值为()A.B.C.D.【答案】C【解析】,所以函数的最大值为,选C.8.【云南师大附中2022届高三高考适应性月考卷(三)理科】对于函数,下列说法正确的是()A.该函数的值域是B.当且仅当时,C.当且仅当时,该函数取最大值1D.该函数是以为最小正周期的周期函数【答案】B【解析】由图象知,函数值域为,A错;当且仅当时,该函数取得最大值,C错;最小正周期为,D错.9.【天津市耀华中学2022届高三第一次月考理科】在△ABC中,a,b,c分别是角A,B,C的对边,a=,b=,且1+2cos(B+C)=0,则BC边上的高等于A、-1B、+1C、D、【答案】D-17-\n【解析】由,得,所以。有正弦定理得,即,得,因为,所以,即。由余弦定理得得,即,解得,所以BC边上的高为,选D.10.【天津市耀华中学2022届高三第一次月考理科】把函数的图象上所有的点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是A、B、C、D、【答案】C【解析】把函数的图象上所有的点向左平行移动个单位长度,得到函数,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到函数,所以选C.11.【天津市新华中学2022届高三上学期第二次月考理】把函数的图象向右平移个单位,再把所得图象上各点的横坐标缩短到原来的一半,则所得图象对应的函数解析式是A.y=sin(4x+)B.y=sin(4x+)C.y=sin4xD.y=sinx【答案】C【解析】把函数的图象向右平移个单位,得到函数-17-\n,再把所得图象上各点的横坐标缩短到原来的一半,则所得图象对应的函数解析式是,选C.12.【天津市天津一中2022届高三上学期一月考理】在∆ABC中,A,B,C为内角,且,则∆ABC是A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰或直角三角形 【答案】D【解析】由得,所以或,即或,所以三角形为等腰或直角三角形,选D.13.【天津市天津一中2022届高三上学期一月考理】函数f(x)=sin2x-4sin3xcosx(x∈R)的最小正周期为 A.    B.    C.    D.π      【答案】C【解析】,所以函数的周期为,选C.14.【天津市天津一中2022届高三上学期一月考理】设函数(x∈R),则f(x)A.在区间[-π,]上是减函数B.在区间上是增函数C.在区间[,]上是增函数D.在区间上是减函数【答案】B【解析】当时,,即,此时函数单调递减,所以在区间上是增函数,选B.15.【山东省烟台市莱州一中2022届高三10月月考(理)】和是方程的两根,则p、q之间的关系是A.B.C.D.-17-\n【答案】D【解析】根据根与系数之间的关系可得,所以,即,所以,选D.16.【山东省烟台市莱州一中2022届高三10月月考(理)】已知、都是锐角,则=A.B.C.D.【答案】C【解析】因为是锐角,所以,又,所以,所以,.又,选C.17.【山东省烟台市莱州一中2022届高三10月月考(理)】如果函数的图像关于点中心对称,那么的最小值为A.B.C.D.【答案】A【解析】函数关于点对称,则有,即,所以,即,即,所以当时,,此时最小,选A.18.【山东省烟台市莱州一中2022届高三10月月考(理)】函数-17-\n的图象如下,则等于A.0B.503C.1006D.2022【答案】D【解析】由图象可知,函数的最大值为,最小值为,解得,函数的周期,即,所以,所以,当时,,所以,所以,即.在一个周期内,所以,选D.19.【山东省烟台市莱州一中20l3届高三第二次质量检测(理)】已知,则等于A.B.C.D.【答案】C【解析】,选C.20.【山东省烟台市莱州一中20l3届高三第二次质量检测(理)】函数(><)的图象如图所示,为了得到的图象,可以将-17-\n的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】A【解析】由图象知,所以周期,又,所以,所以,又,即,所以,即,所以当时,,所以,又,所以要得到的图象只需将的图象向右平移个单位长度,选A.21.【山东省烟台市莱州一中20l3届高三第二次质量检测(理)】2022年北京庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10米,则旗杆的高度为______米。【答案】【解析】设旗杆的高度为米,如图,可知-17-\n,,所以,根据正弦定理可知,即,所以,所以米。22.【山东省烟台市莱州一中2022届高三10月月考(理)】若则_________.【答案】【解析】.23.【山东省烟台市莱州一中2022届高三10月月考(理)】关于函数有下列命题:①函数的周期为;②直线是的一条对称轴;③点是的图象的一个对称中心;④将的图象向左平移个单位,可得到的图象.其中真命题的序号是______.(把你认为真命题的序号都写上)【答案】①③【解析】,所以周期,所以①正确,当时,不是最值,所以②不正确.,所以③正确.将的图象向左平移个单位,得到,所以④不正确,综上正确的命题为①③.24.【天津市天津一中2022届高三上学期一月考理】已知,且,则-17-\n_________.【答案】【解析】因为,所以,即,所以,所以。25.【天津市天津一中2022届高三上学期一月考理】函数(x∈R)的图象为C,以下结论中:①图象C关于直线对称;②图象C关于点对称;③函数f(x)在区间内是增函数;④由的图象向右平移个单位长度可以得到图象C.则正确的是.(写出所有正确结论的编号)【答案】①②③【解析】当时,,所以为最小值,所以图象C关于直线对称,所以①正确。当时,,所以图象C关于点对称;所以②正确。,当时,,所以,即,此时函数单调递增,所以③正确。的图象向右平移个单位长度,得到,所以④错误,所以正确的是①②③。26.【天津市新华中学2022届高三上学期第二次月考理】在△ABC中,若sinA=2sinBcosC则△ABC的形状为________。【答案】等腰三角形【解析】在三角形中,即,所以-17-\n,所以,即三角形为等腰三角形。27.【天津市耀华中学2022届高三第一次月考理科】函数为常数,A>0,>0)的部分图象如图所示,则f(0)的值是;【答案】【解析】由图象可知,所以,又,所以,所以函数,由,得,所以,即,所以,。28.【天津市耀华中学2022届高三第一次月考理科】在△ABC中,a,b,c分别是角A,B,C的对边,若,则的值为;【答案】【解析】。29.【云南师大附中2022届高三高考适应性月考卷(三)理科】-17-\n在锐角△ABC中,角A、B、C所对的边分别为a、b、c,若b=2,B=且sin2A+sin(A+C)=sinB,则△ABC的面积为。【答案】【解析】,30【山东省临沂市2022届高三上学期期中考试理】在△ABC中,若则的值为.【答案】【解析】,因为所以31.【北京四中2022届高三上学期期中测验数学(理)】已知函数,给出下列四个说法:  ①若,则; ②的最小正周期是;  ③在区间上是增函数; ④的图象关于直线对称.  其中正确说法的序号是______.【答案】③④【解析】函数,若,即,所以,即,所以或,所以①错误;所以周期,所以②错误;当时,,函数递增,所以③正确;当时,为最小值,所以④正确,所以正确的有2个.32.【北京四中2022届高三上学期期中测验数学(理)】定义一种运算,令-17-\n,且,则函数的最大值是______. 【答案】【解析】令,则  ∴由运算定义可知,∴当,即时,该函数取得最大值.  由图象变换可知,  所求函数的最大值与函数在区间上的最大值相同.33.【山东省德州市乐陵一中2022届高三10月月考数学理】若α是锐角,且的值是.【答案】【解析】∵是锐角,,,所以,.34.【山东省德州市乐陵一中2022届高三10月月考数学理】函数的图象如图所示,则的值等于-17-\n【答案】【解析】由图知,,,所以周期,又,所以,所以,即,所以,所以,又,所以.35.【山东省实验中学2022届高三第一次诊断性测试理】在△ABC中,角A,B,C的对边为a,b,c,若,则角A=。【答案】或【解析】由正弦定理可知,即,所以,因为,所以,所以或。36.【山东省德州市乐陵一中2022届高三10月月考数学理】如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,测得,CD=30,并在点C测得塔顶A的仰角为60.则塔高AB=__________.【答案】-17-\n【解析】因为,所以,在三角形中,根据正弦定理可知,即,解得,在直角中,,所以.37.【山东省聊城市东阿一中2022届高三上学期期初考试】在△ABC中,若∠A:∠B:∠C=1:2:3,则【答案】【解析】因为∠A:∠B:∠C=1:2:3,则可知A,B,C分别为,根据直角三角形中边的比例关系可知,38.【山东省聊城市东阿一中2022届高三上学期期初考试】已知       【答案】.【解析】因为则。54【山东省临沂市2022届高三上学期期中考试理】已知下列四个命题:①若;②函数是奇函数;③“”是“”的充分不必要条件;④在△ABC中,若,则△ABC是直角三角形.其中所有真命题的序号是.【答案】①②④【解析】,所以①正确;为奇函数,所以②正确;由可知,所以“”是“”的充要条件,所以③不正确;由得,所以,所以,即,所以△ABC是直角三角形,所以④正确,所以真命题的序号是①②④.-17-\n39.【山东省实验中学2022届高三第二次诊断性测试理】在中,,且,则此三角形为.【答案】等边三角形【解析】由得,,所以,即,所以。由得,,得或,所以或。当时,,此时不存在,不成立,舍去。当时,,此时,三角形为等边三角形。40.【山东省师大附中2022届高三12月第三次模拟检测理】在中,依次成等比数列,则B的取值范围是【答案】【解析】因为依次成等比数列,所以,即,所以,所以,所以,即B的取值范围是。41.【山东省烟台市2022届高三上学期期中考试理】在中,若,则__________.【答案】2【解析】在中,两边同除以得.42.【山东省烟台市2022届高三上学期期中考试理】函数的单调递增区间为【答案】【解析】由知当即-17-\n时,为增函数.,∴函数的增区间为.-17-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:56:03 页数:17
价格:¥3 大小:803.92 KB
文章作者:U-336598

推荐特供

MORE