首页

【三维设计】2022届高考数学一轮复习 教师备选作业 第一章 第二节 命题及其关系、充分条件与必要条件 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第一章第二节命题及其关系、充分条件与必要条件一、选择题1.设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的(  )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“若-1<x<1,则x2<1”的逆否命题是(  )A.若x≥1或x≤-1,则x2≥1B.若x2<1,则-1<x<1C.若x2>1,则x>1或x<-1D.若x2≥1,则x≥1或x≤-13.设a1,a2,b1,b2均不为0,则“=”是“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”的(  )A.充分必要条件      B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.“a=0”是“函数y=ln|x-a|为偶函数”的(  )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件5.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是(  )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的(  )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4\n二、填空题7.给出命题:已知实数a、b满足a+b=1,则ab≤.它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.8.(2022·盐城模拟)已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-1)y+2=0(a∈R),则l1⊥l2的充要条件是a=________.9.p:“向量a与向量b的夹角θ为锐角”是q:“a·b>0”的________条件.三、解答题10.已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若命题“A∩B=∅”是假命题,求实数m的取值范围.11.(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在求出p的取值范围;(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在求出p的取值范围.12.设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.详解答案一、选择题1.解析:A∪B={x∈R|x<0或x>2},C={x∈R|x<0或x>2},∵A∪B=C,∴x∈A∪B是x∈C的充分必要条件.4\n答案:C2.解析:若原命题是“若p,则q”,则逆否命题为“若綈q则綈p”,故此命题的逆否命题是“若x2≥1,则x≥1或x≤-1”.答案:D3.解析:“不等式a1x+b1>0与a2x+b2>0的解集相同”⇒“=”,但“=”“不等式a1x+b1>0与a2x+b2>0的解集相同”,如:a1=1,b1=-1,a2=-1,b2=1.答案:C4.解析:当a=0时,函数y=ln|x|为偶函数;当函数y=ln|x-a|为偶函数时,有ln|-x-a|=ln|x-a|,∴a=0.答案:A5.解析:否命题是既否定题设又否定结论.答案:B6.解析:当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=,a4=-,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件.答案:A二、填空题7.解析:∵a+b=1⇒1=(a+b)2=a2+2ab+b2≥4ab⇒ab≤.∴原命题为真,从而逆否命题为真;若ab≤,显然得不出a+b=1,故逆命题为假,因而否命题为假.答案:18.解析:l1⊥l2⇔2a+(a-1)=0,解得a=.答案:9.解析:若向量a与向量b的夹角θ为锐角,则cosθ=>0,即a·b>0;由a·b>0可得cosθ=>0,故θ为锐角或θ=0°,故p是q的充分不必要条件.答案:充分不必要三、解答题10.解:因为“A∩B=∅”是假命题,所以A∩B≠∅.设全集U={m|Δ=(-4m)2-4(2m+6)≥0},4\n则U={m|m≤-1或m≥}.假设方程x2-4mx+2m+6=0的两根x1,x2均非负,则有⇒⇒m≥.又集合{m|m≥}.关于全集U的补集是{m|m≤-1},所以实数m的取值范围是{m|m≤-1}.11.解:(1)当x>2或x<-1时,x2-x-2>0,由4x+p<0得x<-,故-≤-1时,“x<-”⇒“x<-1”⇒“x2-x-2>0”.∴p≥4时,“4x+p<0”是“x2-x-2>0”的充分条件.(2)不存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件.12.解:(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0,当a=1时,解得1<x<3,即p为真时实数x的取值范围是1<x<3.由,得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)p是q的必要不充分条件,即q⇒p且pq,设A={x|p(x)},B={x|q(x)},则AB,又B=(2,3],当a>0时,A=(a,3a);a<0时,A=(3a,a).所以当a>0时,有解得1<a≤2;当a<0时,显然A∩B=∅,不合题意.综上所述,实数a的取值范围是1<a≤2.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:58:07 页数:4
价格:¥3 大小:24.77 KB
文章作者:U-336598

推荐特供

MORE