【创新设计】(浙江专用)2022届高考数学总复习 第10篇 第1讲 随机抽样限时训练 理
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
计数原理第1讲 随机抽样分层A级 基础达标演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.若甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ). A.20种B.30种C.40种D.60种解析 分三类:甲在周一,共有A种排法;甲在周二,共有A种排法;甲在周三,共有A种排法;∴A+A+A=20.答案 A2.(2022·琼海模拟)某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法总数是( ).A.210B.420C.56D.22解析 由分类加法计数原理:两类配餐方法和即为所求,所以每天不同午餐的搭配方法总数为:CC+CC=210.答案 A3.(2022·海口模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且同学甲不参加“围棋苑”,则不同的参加方法的种数为( ).A.72B.108C.180D.216解析5\n 设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有CA种方法,故共有CCA种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法;综合(1)(2),共有CCA+CA=180种参加方法.答案 C4.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( ).A.60B.48C.36D.24解析 长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.答案 B二、填空题(每小题5分,共10分)5.(2022·抚州模拟)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有________条(用数字表示).解析 因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B,两数的顺序不同,表示的直线不同,所以直线的条数为A=30.答案 306.数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.解析 必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.答案 12三、解答题(共25分)7.(12分)设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.(1)P可以表示多少个平面上的不同的点?(2)P可以表示多少个第二象限内的点?5\n(3)P可以表示多少个不在直线y=x上的点?解 (1)分两步,第一步确定横坐标有6种,第二步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N=6×6=36(个).(2)分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得N=3×2=6个.(3)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得N=6×5=30个.8.(13分)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法数.解 法一 可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥SABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).法二 以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).法三 按所用颜色种数分类第一类,5种颜色全用,共有A种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A种不同的方法.由分类加法计数原理,得不同的染色方法总数为A+2×A+A=420(种).分层B级 创新能力提升5\n1.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( ). A.300种B.240种C.144种D.96种解析 甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有CA-CA=240.答案 B2.(2022·安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( ).A.1或3B.1或4C.2或3D.2或4解析 利用排列、组合知识求解.设6位同学分别用a,b,c,d,e,f表示.若任意两位同学之间都进行交换共进行C=15(次)交换,现共进行13次交换,说明有两次交换没有发生,此时可能有两种情况:(1)由3人构成的2次交换,如a-b和a-c之间的交换没有发生,则收到4份纪念品的有b,c两人.(2)由4人构成的2次交换,如a-b和c-e之间的交换没有发生,则收到4份纪念品的有a,b,c,e四人.故选D.答案 D3.(2022·潍坊期中)如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析 当相同的数字不是1时,有C个;当相同的数字是1时,共有CC个,由分类加法计数原理得共有“好数”C+CC=12个.答案 124.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有________种.解析5\n 由于3×3方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起.如图中的△,当△全为1时,有2种(即第一行第2列为2或3,当第二列填2时,第三列只能填3,当第一行填完后,其他行的数字便可确定),当△全为2或3时,分别有2种,所以共有6种;当△分别为1,2,3时,也共有6种.共12种.答案 125.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有多少种?解 先涂A、D、E三个点,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法;另一类是B与E或D不同色,共有1×(1×1+1×2)=3种涂法.所以涂色方法共有24×(8+3)=264(种).6.从1,2,3,…,9这9个数字中任取2个不同的数分别作为一个对数的底数和真数.一共可以得到多少个不同的对数值?其中比1大的有几个?解 在2,3,…,9这8个数中任取2个数组成对数,有A个,在这些对数值中,log24=log39,log42=log93,log23=log49,log32=log94,重复计数4个;又1不能作为对数的底数,1作为真数时,不论底数为何值,其对数值均为0.所以,可以得到A-4+1=53个不同的对数值.要求对数值比1大,分类完成;底数为2时,真数从3,4,5,…,9中任取一个,有7种选法;底数为3时,真数从4,5,…,9中任取一个,有6种选法……依次类推,当底数为8时,真数只能取9,故有7+6+5+4+3+2+1=28(个).但其中log24=log39,log23=log49,所以,比1大的对数值有28-2=26(个).5
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)