首页

五年高考2022届高考数学复习第三章第二节导数的应用文全国通用

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/21

2/21

剩余19页未读,查看更多内容需下载

考点一 导数与函数的单调性1.(2022·陕西,9)设f(x)=x-sinx,则f(x)(  )A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数解析 f(x)=x-sinx的定义域为R,关于原点对称,且f(-x)=-x-sin(-x)=-x+sinx=-f(x),故f(x)为奇函数.又f′(x)=1-sinx≥0恒成立,所以f(x)在其定义域内为增函数,故选B.答案 B2.(2022·新课标全国Ⅱ,11)若函数f(x)=kx-lnx在区间(1,+∞)单调递增,则k的取值范围是(  )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)解析 因为f(x)=kx-lnx,所以f′(x)=k-.因为f(x)在区间(1,+∞)上单调递增,所以当x>1时,f′(x)=k-≥0恒成立,即k≥在区间(1,+∞)上恒成立.因为x>1,所以0<<1,所以k≥1.故选D.答案 D3.(2022·浙江,8)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是(  )21\n解析 由导函数图象知,函数f(x)在[-1,1]上为增函数.当x∈(-1,0)时,f′(x)由小到大,则f(x)图象的增长趋势由缓到快,当x∈(0,1)时f′(x)由大到小,则f(x)的图象增长趋势由快到缓,故选B.答案 B4.(2022·新课标全国Ⅱ,21)已知f(x)=lnx+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解 (1)f(x)的定义域为(0,+∞),f′(x)=-a.若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.若a>0,则当x∈时,f′(x)>0;当x∈时,f′(x)<0.所以f(x)在上单调递增,在上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=取得最大值,最大值为f=ln+a=-lna+a-1.因此f>2a-2等价于lna+a-1<0.令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).5.(2022·天津,20)已知函数f(x)=4x-x4,x∈R.(1)求f(x)的单调区间;21\n(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);(3)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-+4.(1)解 由f(x)=4x-x4,可得f′(x)=4-4x3.当f′(x)>0,即x<1时,函数f(x)单调递增;当f′(x)<0,即x>1时,函数f(x)单调递减.所以,f(x)的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明 设点P的坐标为(x0,0),则x0=4,f′(x0)=-12.曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0),即g(x)=f′(x0)(x-x0).令函数F(x)=f(x)-g(x),即F(x)=f(x)-f′(x0)(x-x0),则F′(x)=f′(x)-f′(x0).由于f′(x)=-4x3+4在(-∞,+∞)上单调递减,故F′(x)在(-∞,+∞)上单调递减,又因为F′(x0)=0,所以当x∈(-∞,x0)时,F′(x)>0,当x∈(x0,+∞)时,F′(x)<0,所以F(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减,所以对于任意的实数x,F(x)≤F(x0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明 由(2)知g(x)=-12(x-4).设方程g(x)=a的根为x2′,可得x2′=-+4.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2′),因此x2≤x2′.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,21\n即f(x)≤h(x).设方程h(x)=a的根为x1′,可得x1′=.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1′)=a=f(x1)≤h(x1),因此x1′≤x1,由此可得x2-x1≤x2′-x1′=-+4.6.(2022·广东,21)设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2时,讨论f(x)+在区间(0,+∞)内的零点个数.解 (1)f(0)=a2+|a|-a2+a=|a|+a,因为f(0)≤1,所以|a|+a≤1,当a≤0时,|a|+a=-a+a=0≤1,显然成立;当a>0,则有|a|+a=2a≤1,所以a≤,所以0<a≤,综上所述,a的取值范围是a≤.(2)f(x)=对于u1=x2-(2a-1)x,其对称轴为x==a-<a,开口向上,所以f(x)在(a,+∞)上单调递增;对于u1=x2-(2a+1)x+2a,其对称轴为x==a+>a,开口向上,所以f(x)在(-∞,a)上单调递减,综上,f(x)在(a,+∞)上单调递增,在(-∞,a)上单调递减,(3)由(2)得f(x)在(a,+∞)上单调递增,在(0,a)上单调递减,所以f(x)min=f(a)=a-a2.(ⅰ)当a=2时,f(x)min=f(2)=-2,f(x)=令f(x)+=0,即f(x)=-(x>0),因为f(x)在(0,2)上单调递减,所以f(x)>f(2)=-2,而y=-在(0,2)上单调递增,y<f(2)=2,21\n所以y=f(x)与y=-在(0,2)无交点.当x≥2时,f(x)=x2-3x=-,即x3-3x2+4=0,所以x3-2x2-x2+4=0,所以(x-2)2(x+1)=0,因为x≥2,所以x=2,即当a=2时,f(x)+有一个零点x=2.(ⅱ)当a>2时,f(x)min=f(a)=a-a2,当x∈(0,a)时,f(0)=2a>4,f(a)=a-a2,而y=-在x∈(0,a)上单调递增,当x=a时,y=-,下面比较f(a)=a-a2与-的大小,因为a-a2-==<0所以f(a)=a-a2<-.结合图象不难得当a>2,y=f(x)与y=-有两个交点,综上,当a=2时,f(x)+有一个零点x=2;当a>2,y=f(x)与y=-有两个零点.7.(2022·安徽,20)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解 (1)f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2.令f′(x)=0,得x1=,x2=,x1<x2,所以f′(x)=-3(x-x1)(x-x2).当x<x1或x>x2时,f′(x)<0;当x1<x<x2时,f′(x)>0.21\n故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在(x1,x2)内单调递增.(2)因为a>0,所以x1<0,x2>0.①当a≥4时,x2≥1,由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1.由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值.又f(0)=1,f(1)=a,所以当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处同时取得最小值;当1<a<4时,f(x)在x=0处取得最小值.8.(2022·广东,21)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈∪,使得f(x0)=f.解 (1)f′(x)=x2+2x+a开口向上,方程x2+2x+a=0的判别式Δ=4-4a=4(1-a),若a≥1,则Δ≤0,f′(x)=x2+2x+a≥0恒成立,∴f(x)在R上单调递增.若a<1,则Δ>0,方程x2+2x+a=0有两个不同的实数根,x1=-1-,x2=-1+,当x<x1或x>x2时,f′(x)>0;当x1<x<x2时,f′(x)<0,∴f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).综上所述,当a≥1时,f(x)在R上单调递增;当a<1时,f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),f(x)的单调递减区间为(-1-,-1+).(2)当a<0时,Δ>0,且f(0)=1,f=+,f(1)=+a,21\n此时x1<0,x2>0,令x2=得a=-.①当-<a<0时,x1<0<x2<,f(x)在(0,x2)上单调递减,在上单调递增,在上单调递增.(ⅰ)若-<a<-,则f(0)=1>f,∴存在x0∈(0,x2),使得f(x0)=f;(ⅱ)当-≤a<0时,f(0)≤f,∴不存在x0∈∪,使得f(x0)=f.②当a=-时,f(x)在上单调递减,在上单调递增.∴不存在x0,使得f(x0)=f.③当-<a<-时,f<f(1),∴存在x0∈∪,使得f(x0)=f.④当a≤-时,f≥f(1),∴不存在x0∈∪,使得f(x0)=f.综上,当a∈∪{-}∪时,不存在x0∈∪,使得f(x0)=f;当a∈∪时,存在x0∈∪,使得f(x0)=f.考点二 导数与极值、最值1.(2022·安徽,10)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是(  )A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<021\n解析 由已知f(0)=d>0,可排除D;其导函数f′(x)=3ax2+2bx+c且f′(0)=c>0,可排除B;又f′(x)=0有两不等实根,且x1x2=>0,所以a>0.故选A.答案 A2.(2022·福建,12)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是(  )A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析 x0是f(x)的极大值点,而不一定是最大值点,∴A错;y=f(-x)与y=f(x)的图象关于y轴对称,-x0应为f(-x)一个极大值点,∴B错;y=-f(x)与y=f(x)图象关于x轴对称,则x0为-f(x)的极小值点,∴C错,故选D.答案 D3.(2022·陕西,9)设函数f(x)=+lnx,则(  )A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点解析 f′(x)=-+=,当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以x=2为f(x)的极小值点,故选D.答案 D4.(2022·浙江,10)设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是(  )21\n解析 令g(x)=f(x)ex,则g′(x)=f′(x)ex+f(x)ex,∵x=-1为函数g(x)的一个极值点,∴g′(-1)=f′(-1)e-1+f(-1)e-1=0.∴f′(-1)=-f(-1).D选项中,f(-1)>0,∴f′(-1)=-f(-1)<0,这与图象不符.答案 D5.(2022·山东,20)设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x-y=0平行.(1)求a的值;(2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(3)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.解 (1)由题意知,曲线y=f(x)在点(1,f(1))处的切线斜率为2,所以f′(1)=2,又f′(x)=lnx++1,所以a=1.(2)k=1时,方程f(x)=g(x)在(1,2)内存在唯一的根.设h(x)=f(x)-g(x)=(x+1)lnx-,当x∈(0,1]时,h(x)<0.又h(2)=3ln2-=ln8->1-1=0,所以存在x0∈(1,2),使得h(x0)=0.因为h′(x)=lnx++1+,所以当x∈(1,2)时,h′(x)>1->0,当x∈(2,+∞)时,h′(x)>0,21\n所以当x∈(1,+∞)时,h(x)单调递增,所以k=1时,方程f(x)=g(x)在(k,k+1)内存在唯一的根.(3)由(2)知方程f(x)=g(x)在(1,2)内存在唯一的根x0.且x∈(0,x0)时,f(x)<g(x),x∈(x0,+∞)时,f(x)>g(x),所以m(x)=当x∈(0,x0)时,若x∈(0,1],m(x)≤0;若x∈(1,x0),由m′(x)=lnx++1>0,可知0<m(x)≤m(x0);故m(x)≤m(x0).当x∈(x0,+∞)时,由m′(x)=,可得x∈(x0,2)时,m′(x)>0,m(x)单调递增;x∈(2,+∞)时,m′(x)<0,m(x)单调递减;可知m(x)≤m(2)=,且m(x0)<m(2).综上可得,函数m(x)的最大值为.6.(2022·浙江,20)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.解 (1)当b=+1时,f(x)=+1,故对称轴为直线x=-.当a≤-2时,g(a)=f(1)=+a+2.当-2<a≤2时,g(a)=f=1.当a>2时,g(a)=f(-1)=-a+2.21\n综上,g(a)=(2)设s,t为方程f(x)=0的解,且-1≤t≤1,则由于0≤b-2a≤1,因此≤s≤(-1≤t≤1).当0≤t≤1时,≤st≤,由于-≤≤0和-≤≤9-4,所以-≤b≤9-4.当-1≤t<0时,≤st≤,由于-2≤<0和-3≤<0,所以-3≤b<0.故b的取值范围是[-3,9-4].7.(2022·天津,19)已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解 (1)由已知,有f′(x)=2x-2ax2(a>0).令f′(x)=0,解得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,0)0f′(x)-0+0-f(x)↘0↗↘所以,f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时,f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.21\n(2)由f(0)=f=0及(1)知,当x∈时,f(x)>0;当x∈时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=.则“对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:(1)当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.(2)当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞,f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B.所以A⊆B.(3)当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是.8.(2022·新课标全国Ⅰ,20)已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解 (1)f′(x)=ex(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2)·.令f′(x)=0得x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0.故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,21\n在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).考点三 导数的综合应用1.(2022·湖南,9)若0<x1<x2<1,则(  )A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1C.x2ex1>x1ex2D.x2ex1<x1ex2解析 构造函数f(x)=ex-lnx,则f′(x)=ex-,故f(x)=ex-lnx在(0,1)上有一个极值点,即f(x)=ex-lnx在(0,1)上不是单调函数,无法判断f(x1)与f(x2)的大小,故A、B错;构造函数g(x)=,则g′(x)==,故函数g(x)=在(0,1)上单调递减,故g(x1)>g(x2),x2ex1>x1ex2,故选C.答案 C2.(2022·新课标全国Ⅰ,12)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(  )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)解析 由题意知f′(x)=3ax2-6x=3x(ax-2),当a=0时,不满足题意.当a≠0时,令f′(x)=0,解得x=0或x=,当a>0时,f(x)在(-∞,0),上单调递增,在上单调递减.又f(0)=1,此时f(x)在(-∞,0)上存在零点,不满足题意;当a<0时,f(x)在,(0,+∞)上单调递减,在上单调递增,要使f(x)存在唯一的零点x0,且x0>0,则需f>0,即a×-3×+1>0,解得a<-2,故选C.答案 C3.(2022·新课标全国Ⅰ,21)设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln.(1)解 f(x)的定义域为(0,+∞),21\nf′(x)=2e2x-(x>0).当a≤0时,f′(x)>0,f′(x)没有零点.当a>0时,因为e2x单调递增,-单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b满足0<b<且b<时,f′(b)<0,故当a>0时,f′(x)存在唯一零点.(2)证明 由(1),可设f′(x)在(0,+∞)的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).由于2e2x0-=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.4.(2022·福建,22)已知函数f(x)=lnx-.(1)求函数f(x)的单调递增区间;(2)证明:当x>1时,f(x)<x-1;(3)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).解 (1)f′(x)=-x+1=,x∈(0,+∞).由f′(x)>0得解得0<x<.故f(x)的单调递增区间是.(2)令F(x)=f(x)-(x-1),x∈(0,+∞).则有F′(x)=.当x∈(1,+∞)时,F′(x)<0,所以F(x)在[1,+∞)上单调递减,故当x>1时,F(x)<F(1)=0,即当x>1时,f(x)<x-1.21\n(3)由(2)知,当k=1时,不存在x0>1满足题意.当k>1时,对于x>1,有f(x)<x-1<k(x-1),则f(x)<k(x-1),从而不存在x0>1满足题意.当k<1时,令G(x)=f(x)-k(x-1),x∈(0,+∞),则有G′(x)=-x+1-k=.由G′(x)=0得,-x2+(1-k)x+1=0.解得x1=<0,x2=>1.当x∈(1,x2)时,G′(x)>0,故G(x)在[1,x2)内单调递增.从而当x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x-1).综上,k的取值范围是(-∞,1).5.(2022·浙江,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.解 (1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=,21\n得解得(2)①由(1)知,y=(5≤x≤20),则点P的坐标为,设在点P处的切线l交x,y轴分别于A,B点,y′=-,则l的方程为y-=-(x-t),由此得A,B.故f(t)==,t∈[5,20].②设g(t)=t2+,则g′(t)=2t-.令g′(t)=0,解得t=10.当t∈(5,10)时,g′(t)<0,g(t)是减函数;当t∈(10,20)时,g′(t)>0,g(t)是增函数.从而,当t=10时,函数g(t)有极小值,也是最小值,所以g(t)min=300,此时f(t)min=15.答:当t=10时,公路l的长度最短,最短长度为15千米.6.(2022·湖南,21)已知a>0,函数f(x)=aexcosx(x∈[0,+∞)).记xn为f(x)的从小到大的第n(n∈N*)个极值点.(1)证明:数列{f(xn)}是等比数列;(2)若对一切n∈N*,xn≤|f(xn)|恒成立,求a的取值范围.解 (1)f′(x)=aexcosx-aexsinx=aexcos.令f′(x)=0,由x≥0,得x+=mπ-,即x=mπ-,m∈N*.21\n而对于cos,当k∈Z时,若2kπ-<x+<2kπ+,即2kπ-<x<2kπ+,则cos>0.若2kπ+<x+<2kπ+,即2kπ+<x<2kπ+,则cos<0.因此,在区间与上,f′(x)的符号总相反.于是当x=mπ-(m∈N*)时,f(x)取得极值,所以xn=nπ-π(n∈N*).此时,f(xn)=aenπ-cos=(-1)n+1enπ-.易知f(xn)≠0,而==-eπ是常数,故数列{f(xn)}是首项为f(x1)=e,公比为-eπ的等比数列.(2)对一切n∈N*,xn≤|f(xn)|恒成立,即nπ-≤enπ-恒成立,亦即≤恒成立(因为a>0).设g(t)=(t>0),则g′(t)=.令g′(t)=0得t=1.当0<t<1时,g′(t)<0,所以g(t)在区间(0,1)上单调递减;当t>1时,g′(t)>0,所以g(t)在区间(1,+∞)上单调递增.因为x1∈(0,1),且当n≥2时,xn∈(1,+∞),xn<xn+1,所以[g(xn)]min=min{g(x1),g(x2)}=min=g=e.因此,xn≤|f(xn)|恒成立,当且仅当≤e.解得a≥e-.故a的取值范围是.21\n7.(2022·陕西,21)设函数f(x)=lnx+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f′(x)-零点的个数;(3)若对任意b>a>0,<1恒成立,求m的取值范围.解 (1)由题设,当m=e时,f(x)=lnx+,则f′(x)=,∴当x∈(0,e),f′(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上单调递增,∴x=e时,f(x)取得极小值f(e)=lne+=2,∴f(x)的极小值为2.(2)由题设g(x)=f′(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点.∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;21\n当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.(3)对任意的b>a>0,<1恒成立,等价于f(b)-b<f(a)-a恒成立.(*)设h(x)=f(x)-x=lnx+-x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h′(x)=--1≤0在(0,+∞)上恒成立,得m≥-x2+x=-+(x>0)恒成立,∴m≥(对m=,h′(x)=0仅在x=时成立),∴m的取值范围是.8.(2022·新课标全国Ⅰ,21)设函数f(x)=alnx+x2-bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0.(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.解 (1)f′(x)=+(1-a)x-b.由题设知f′(1)=0,解得b=1.(2)f(x)的定义域为(0,+∞),由(1)知,f(x)=alnx+x2-x,f′(x)=+(1-a)x-1=(x-)(x-1).①若a≤,则≤1,故当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)单调递增.所以,存在x0≥1,使得f(x0)<的充要条件为f(1)<,即-1<,解得--1<a<-1.②若<a<1,则>1,故当x∈时,f′(x)<0;当x∈时,f′(x)>0.f(x)在单调递减,在单调递增.21\n所以,存在x0≥1,使得f(x0)<的充要条件为f<.而f=aln++>,所以不合题意.③若a>1,则f(1)=-1=<.综上,a的取值范围是(--1,-1)∪(1,+∞).9.(2022·陕西,21)已知函数f(x)=ex,x∈R.(1)求f(x)的反函数的图象上点(1,0)处的切线方程;(2)证明:曲线y=f(x)与曲线y=x2+x+1有唯一公共点;(3)设a<b,比较f与的大小,并说明理由.(1)解 f(x)的反函数为g(x)=lnx,设所求切线的斜率为k,∵g′(x)=,∴k=g′(1)=1.于是在点(1,0)处切线方程为y=x-1.(2)证明 法一 曲线y=ex与y=x2+x+1公共点的个数等于函数φ(x)=ex-x2-x-1零点的个数.∵φ(0)=1-1=0,∴φ(x)存在零点x=0.又φ′(x)=ex-x-1,令h(x)=φ′(x)=ex-x-1,则h′(x)=ex-1,当x<0时,h′(x)<0,∴φ′(x)在(-∞,0)上单调递减;当x>0时,h′(x)>0,∴φ′(x)在(0,+∞)上单调递增.∴φ′(x)在x=0有唯一的极小值φ′(0)=0,即φ′(x)在R上的最小值为φ′(0)=0.∴φ′(x)≥0(当且仅当x=0时等号成立),∴φ(x)在R上是单调递增的.∴φ(x)与R上有唯一的零点.故曲线y=f(x)与y=x2+x+1有唯一的公共点.法二 ∵ex>0,x2+x+1>0,21\n∴曲线y=ex与y=x2+x+1公共点的个数等于曲线y=与y=1公共点的个数,设φ(x)=,则φ(0)=1,即x=0时,两曲线有公共点.又φ′(x)==≤0(当且仅当x=0时等号成立),∴φ(x)在R上单调递减.∴φ(x)在y=1有唯一的公共点.故曲线y=f(x)与y=x2+x+1有唯一的公共点.(3)解 -f=-e==[e-e-(b-a)].设函数u(x)=ex--2x(x≥0),则u′(x)=ex+-2≥2-2=0,∴u′(x)≥0(当且仅当x=0时等号成立).∴u(x)单调递增.当x>0时,u(x)>u(0)=0.令x=,则得e-e-(b-a)>0,又>0,∴>f.21

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:59:42 页数:21
价格:¥3 大小:258.62 KB
文章作者:U-336598

推荐特供

MORE