首页

全国通用2022高考数学二轮复习专题一第1讲函数图象与性质及函数与方程

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第1讲 函数图象与性质及函数与方程一、选择题1.(2022·广东卷)下列函数中,既不是奇函数,也不是偶函数的是(  )A.y=x+exB.y=x+C.y=2x+D.y=解析 令f(x)=x+ex,则f(1)=1+e,f(-1)=-1+e-1,即f(-1)≠f(1),f(-1)≠-f(1),所以y=x+ex既不是奇函数也不是偶函数,而B,C,D依次是奇函数、偶函数、偶函数,故选A.答案 A2.函数f(x)=log2x-的零点所在的区间为(  )A.B.C.(1,2)D.(2,3)解析 函数f(x)的定义域为(0,+∞),且函数f(x)在(0,+∞)上为增函数.f=log2-=-1-2=-3<0,f(1)=log21-=0-1<0,f(2)=log22-=1-=>0,f(3)=log23->1-=>0,即f(1)·f(2)<0,∴函数f(x)=log2x-的零点在区间(1,2)内.答案 C3.(2022·山东卷)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是(  )A.B.C.(1,2)D.(2,+∞)解析 由f(x)=g(x),∴|x-2|+1=kx,即|x-2|=kx-1,所以原题等价于函数y=|x-2|与y=kx-1的图象有2个不同交点.如图:∴y=kx-1在直线y=x-1与y=x-1之间,∴<k<1,故选B.答案 B5\n4.(2022·山东卷)设函数f(x)=则满足f(f(a))=2f(a)的a取值范围是(  )A.B.[0,1]C.D.[1,+∞)解析 当a=2时,f(a)=f(2)=22=4>1,f(f(a))=2f(a),∴a=2满足题意,排除A,B选项;当a=时,f(a)=f=3×-1=1,f(f(a))=2f(a),∴a=满足题意,排除D选项,故答案为C.答案 C5.(2022·全国Ⅱ卷)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为(  )解析 当点P沿着边BC运动,即0≤x≤时,在Rt△POB中,|PB|=|OB|tan∠POB=tanx,在Rt△PAB中,|PA|==,则f(x)=|PA|+|PB|=+tanx,它不是关于x的一次函数,图象不是线段,故排除A和C;当点P与点C重合,即x=时,由上得f=+tan=+1,又当点P与边CD的中点重合,即x=时,△PAO与△PBO是全等的腰长为1的等腰直角三角形,故f=|PA|+|PB|=+=2,知f<f,故又可排除D.综上,选B.答案 B5\n二、填空题6.(2022·福建卷)若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是________.解析 由题意f(x)的图象如图,则∴1<a≤2.答案 (1,2]7.(2022·洛阳模拟)若函数f(x)=有两个不同的零点,则实数a的取值范围是________.解析 当x>0时,由f(x)=lnx=0,得x=1.因为函数f(x)有两个不同的零点,则当x≤0时,函数f(x)=2x-a有一个零点,令f(x)=0得a=2x,因为0<2x≤20=1,所以0<a≤1,所以实数a的取值范围是0<a≤1.答案 (0,1]8.已知函数y=f(x)是R上的偶函数,对x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有<0,给出下列命题:①f(2)=0;②直线x=-4是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[-4,4]上有四个零点;④f(2014)=0.其中所有正确命题的序号为________.解析 令x=-2,得f(-2+4)=f(-2)+f(2),解得f(-2)=0,因为函数f(x)为偶函数,所以f(2)=0,①正确;因为f(-4+x)=f(-4+x+4)=f(x),f(-4-x)=f(-4-x+4)=f(-x)=f(x),所以f(-4+x)=f(-4-x),即x=-4是函数f(x)的一条对称轴,②正确;当x1,x2∈[0,2],且x1≠x2时,都有<0,说明函数f(x)在[0,2]上是单调递减函数,又f(2)=0,因此函数f(x)在[0,2]上只有一个零点,由偶函数知函数f(x)在[-2,0]上也只有一个零点,由f(x+4)=f(x),知函数的周期为4,所以函数f(x)在(2,4]与[-4,-2)上也单调,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f(2)=f(6)=f(10)=…=f(2014)=0,④正确.5\n答案 ①②④三、解答题9.定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=-(a∈R).(1)写出f(x)在[0,1]上的解析式;(2)求f(x)在[0,1]上的最大值.解 (1)∵f(x)是定义在[-1,1]上的奇函数,∴f(0)=0,∴a=1,∴当x∈[-1,0]时,f(x)=-.设x∈[0,1],则-x∈[-1,0],∴f(-x)=-=4x-2x,∵f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=2x-4x.∴f(x)在[0,1]上的解析式为f(x)=2x-4x.(2)f(x)=2x-4x,x∈[0,1],令t=2x,t∈[1,2],g(t)=t-t2=-+,∴g(t)在[1,2]上是减函数,∴g(t)max=g(1)=0,即x=0,f(x)max=0.10.(2022·太原模拟)已知函数f(x)=ax2-2ax+2+b(a≠0)在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-2mx在[2,4]上单调,求m的取值范围.解 (1)f(x)=a(x-1)2+2+b-a.①当a>0时,f(x)在[2,3]上为增函数,故②当a<0时,f(x)在[2,3]上为减函数,故故或(2)∵b<1,∴a=1,b=0,即f(x)=x2-2x+2,g(x)=x2-2x+2-2mx=x2-(2+2m)x+2.若g(x)在[2,4]上单调,则≤2或≥4,∴2m≤2或2m≥6,即m≤1或m≥log26.故m的取值范围是(-∞,1]∪[log26,+∞).5\n11.已知函数f(x)=-x2+2ex+m-1,g(x)=x+(x>0).(1)若g(x)=m有实根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.解 (1)∵x>0,∴g(x)=x+≥2=2e,等号成立的条件是x=e.故g(x)的值域是[2e,+∞),因而只需m≥2e,则g(x)=m就有实根.故m∈[2e,+∞).(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+(x>0)的大致图象.∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2.其对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:52:33 页数:5
价格:¥3 大小:92.53 KB
文章作者:U-336598

推荐特供

MORE