首页

全国通用2022高考数学二轮复习专题一第4讲导数与函数图象的切线及函数零点问题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第4讲 导数与函数图象的切线及函数零点问题一、选择题1.曲线y=在点(-1,-1)处的切线方程为(  )A.y=2x+1B.y=2x-1C.y=-2x-3D.y=-2x-2解析 易知点(-1,-1)在曲线上,且y′==,所以切线斜率k=y′|x=-1==2.由点斜式得切线方程为y+1=2(x+1),即y=2x+1.答案 A2.(2022·太原模拟)若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b的值为(  )A.-1B.0C.1D.2解析 ∵f′(x)=-asinx,∴f′(0)=0.又g′(x)=2x+b,∴g′(0)=b,∴b=0.又g(0)=1=m,∴f(0)=a=m=1,∴a+b=1.答案 C3.(2022·邯郸模拟)直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值为(  )A.2B.-1C.1D.-2解析 ∵y′=3x2+a.∴y′|x=1=3+a=k,又3=k+1,∴k=2,∴a=-1.又3=1+a+b,∴b=3,∴2a+b=-2+3=1.答案 C4.(2022·武汉模拟)曲线y=xlnx在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为(  )A.2B.-2C.D.-解析 依题意得y′=1+lnx,y′|x=e=1+lne=2,所以-×2=-1,a=2,故选A.答案 A5\n5.已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)=lnx+x-2的零点为b,则下列不等式中成立的是(  )A.f(a)<f(1)<f(b)B.f(a)<f(b)<f(1)C.f(1)<f(a)<f(b)D.f(b)<f(1)<f(a)解析 由题意,知f′(x)=ex+1>0恒成立,所以函数f(x)在R上是单调递增的,而f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)的零点a∈(0,1);由题意,知g′(x)=+1>0,所以g(x)在(0,+∞)上是单调递增的,又g(1)=ln1+1-2=-1<0,g(2)=ln2+2-2=ln2>0,所以函数g(x)的零点b∈(1,2).综上,可得0<a<1<b<2.因为f(x)在R上是单调递增的,所以f(a)<f(1)<f(b).答案 A二、填空题6.已知f(x)=x3+f′x2-x,则f(x)的图象在点处的切线斜率是________.解析 f′(x)=3x2+2f′x-1,令x=,可得f′=3×+2f′×-1,解得f′=-1,所以f(x)的图象在点处的切线斜率是-1.答案 -17.(2022·成都模拟)关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________.解析 由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0,得x1=0,x2=2.当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以解得-4<a<0.答案 (-4,0)5\n8.(2022·安徽卷)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号).①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2.解析 令f(x)=x3+ax+b,f′(x)=3x2+a,当a≥0时,f′(x)≥0,f(x)单调递增,必有一个实根,④⑤正确;当a<0时,由于选项当中a=-3,∴只考虑a=-3这一种情况,f′(x)=3x2-3=3(x+1)(x-1),∴f(x)极大=f(-1)=-1+3+b=b+2,f(x)极小=f(1)=1-3+b=b-2,要使f(x)=0仅有一个实根,则而f(x)极大<0或f(x)极小>0,∴b<-2或b>2,①③正确,所有正确条件为①③④⑤.答案 ①③④⑤三、解答题9.已知曲线C:y=eax.(1)若曲线C在点(0,1)处的切线为y=2x+m,求实数a和m的值;(2)对任意实数a,曲线C总在直线l:y=ax+b的上方,求实数b的取值范围.解 (1)y′=aeax,因为曲线C在点(0,1)处的切线为y=2x+m,所以1=2×0+m且y′|x=0=2,解得m=1,a=2.(2)法一 对于任意实数a,曲线C总在直线y=ax+b的上方,等价于x,a∈R,都有eax>ax+b,即x,a∈R,eax-ax-b>0恒成立.令g(x)=eax-ax-b,①若a=0,则g(x)=1-b,所以实数b的取值范围是b<1;②若a≠0,g′(x)=a(eax-1),由g′(x)=0得x=0,g′(x),g(x)的变化情况如下:x(-∞,0)0(0,+∞)g′(x)-0+g(x)极小值所以g(x)的最小值为g(0)=1-b,所以实数b的取值范围是b<1.综上,实数b的取值范围是b<1.法二 对于任意实数a,曲线C总在直线y=ax+b的上方,等价于x,a∈R,都有eax>ax+b,即x,a∈R,b<eax-ax恒成立.令t=ax,则等价于t∈R,b<et-t恒成立.5\n令g(t)=et-t,则g′(t)=et-1.由g′(t)=0得t=0,g′(t),g(t)的变化情况如下:t(-∞,0)0(0,+∞)g′(t)-0+g(t)极小值所以g(t)=et-t的最小值为g(0)=1,所以实数b的取值范围是b<1.10.(2022·济南模拟)已知函数f(x)=2lnx-x2+ax(a∈R).(1)当a=2时,求f(x)的图象在x=1处的切线方程;(2)若函数g(x)=f(x)-ax+m在上有两个零点,求实数m的取值范围.解 (1)当a=2时,f(x)=2lnx-x2+2x,f′(x)=-2x+2,切点坐标为(1,1),切线的斜率k=f′(1)=2,则切线方程为y-1=2(x-1),即y=2x-1.(2)g(x)=2lnx-x2+m,则g′(x)=-2x=.因为x∈,所以当g′(x)=0时,x=1.当<x<1时,g′(x)>0;当1<x<e时,g′(x)<0.故g(x)在x=1处取得极大值g(1)=m-1.又g=m-2-,g(e)=m+2-e2,g(e)-g=4-e2+<0,则g(e)<g,所以g(x)在上的最小值是g(e).g(x)在上有两个零点的条件是解得1<m≤2+,所以实数m的取值范围是.11.(2022·江苏卷)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪∪,求c的值.5\n解 (1)f′(x)=3x2+2ax,令f′(x)=0,解得x1=0,x2=-.当a=0时,因为f′(x)=3x2≥0,所以函数f(x)在(-∞,+∞)上单调递增;当a>0时,x∈∪(0,+∞)时,f′(x)>0,x∈时,f′(x)<0,所以函数f(x)在,(0,+∞)上单调递增,在上单调递减;当a<0时,x∈(-∞,0)∪时,f′(x)>0,x∈时,f′(x)<0,所以函数f(x)在(-∞,0),上单调递增,在上单调递减.(2)由(1)知,函数f(x)的两个极值为f(0)=b,f=a3+b,则函数f(x)有三个零点等价于f(0)·f=b<0,从而或又b=c-a,所以当a>0时,a3-a+c>0或当a<0时,a3-a+c<0.设g(a)=a3-a+c,因为函数f(x)有三个零点时,a的取值范围恰好是(-∞,-3)∪∪,则在(-∞,-3)上g(a)<0,且在∪上g(a)>0均恒成立.从而g(-3)=c-1≤0,且g=c-1≥0,因此c=1.此时,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a],因函数有三个零点,则x2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0,解得a∈(-∞,-3)∪∪.综上c=1.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:52:31 页数:5
价格:¥3 大小:24.15 KB
文章作者:U-336598

推荐特供

MORE