首页

全国通用2022高考数学二轮复习专题一第3讲导数与函数的单调性极值最值问题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第3讲 导数与函数的单调性、极值、最值问题一、选择题1.函数f(x)=x2-lnx的单调递减区间为(  )A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)解析 由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数f(x)的单调递减区间为(0,1].答案 B2.(2022·武汉模拟)已知函数f(x)=mx2+lnx-2x在定义域内是增函数,则实数m的取值范围是(  )A.[-1,1]B.[-1,+∞)C.[1,+∞)D.(-∞,1]解析 f′(x)=mx+-2≥0对一切x>0恒成立,∴m≥-+.令g(x)=-+,则当=1,即x=1时,函数g(x)取最大值1.故m≥1.答案 C3.(2022·临沂模拟)函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )A.[0,1)B.(-1,1)C.D.(0,1)解析 f′(x)=3x2-3a=3(x2-a).当a≤0时,f′(x)>0,∴f(x)在(0,1)内单调递增,无最小值.当a>0时,f′(x)=3(x-)(x+).当x∈(-∞,-)和(,+∞)时,f(x)单调递增;当x∈(-,)时,f(x)单调递减,所以当<1,即0<a<1时,f(x)在(0,1)内有最小值.答案 D4.(2022·陕西卷)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是(  )A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上5\n解析 A正确等价于a-b+c=0,①B正确等价于b=-2a,②C正确等价于=3,③D正确等价于4a+2b+c=8.④下面分情况验证:若A错,由②、③、④组成的方程组的解为符合题意;若B错,由①、③、④组成的方程组消元转化为关于a的方程后无实数解;若C错,由①、②、④组成方程组,经验证a无整数解;若D错,由①、②、③组成的方程组a的解为-也不是整数.综上,故选A.答案 A5.(2022·潍坊模拟)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为(  )A.{x|x>0}B.{x|x<0}C.{x|x<-1,或x>1}D.{x|x<-1,或0<x<1}解析 构造函数g(x)=ex·f(x)-ex,因为g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,所以g(x)=ex·f(x)-ex为R上的增函数.又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.答案 A二、填空题6.(2022·陕西卷)设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为________.解析 ∵(ex)′=e0=1,设P(x0,y0),有′|=-=-1,5\n又∵x0>0,∴x0=1,故P的坐标为(1,1).答案 (1,1)7.若f(x)=x3+3ax2+3(a+2)x+1在R上单调递增,则a的取值范围是________.解析 f′(x)=3x2+6ax+3(a+2).由题意知f′(x)≥0在R上恒成立,所以Δ=36a2-4×3×3(a+2)≤0,解得-1≤a≤2.答案 [-1,2]8.(2022·衡水中学期末)若函数f(x)=-x2+4x-3lnx在[t,t+1]上不单调,则t的取值范围是________.解析 对f(x)求导,得f′(x)=-x+4-==-.由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,所以t<1<t+1或t<3<t+1,解得0<t<1或2<t<3.答案 (0,1)∪(2,3)三、解答题9.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解 (1)f′(x)=ex(ax+a+b)-2x-4.由已知,得f(0)=4,f′(0)=4,故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2).令f′(x)=0得,x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0.故f(x)在(-∞,-2],[-ln2,+∞)上单调递增,在[-2,-ln2]上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).5\n10.(2022·长沙模拟)已知函数f(x)=x3-ax2-3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)已知函数g(x)=ln(1+x)-x+x2(k≥0),讨论函数g(x)的单调性.解 (1)对f(x)求导,得f′(x)=3x2-2ax-3.由f′(x)≥0在[1,+∞)上恒成立,得a≤.记t(x)=,当x≥1时,t(x)是增函数,所以t(x)min=(1-1)=0.所以a≤0.(2)g′(x)=,x∈(-1,+∞).当k=0时,g′(x)=-,所以在区间(-1,0)上,g′(x)>0;在区间(0,+∞)上,g′(x)<0.故g(x)的单调递增区间是(-1,0],单调递减区间是[0,+∞).当0<k<1时,由g′(x)==0,得x1=0,x2=>0,所以在区间(-1,0)和上,g′(x)>0;在区间上,g′(x)<0.故g(x)的单调递增区间是(-1,0]和,单调递减区间是.当k=1时,g′(x)=>0,故g(x)的单调递增区间是(-1,+∞).当k>1时,g′(x)==0,得x1=∈(-1,0),x2=0,所以在区间和(0,+∞)上,g′(x)>0,在区间上,g′(x)<0.故g(x)的单调递增区间是和[0,+∞),单调递减区间是.11.(2022·山东卷)设函数f(x)=-k(k为常数,e=2.71828…是自然对数的底数).(1)当k≤0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.解 (1)函数y=f(x)的定义域为(0,+∞).5\nf′(x)=-k=-=.由k≤0可得ex-kx>0,所以当x∈(0,2)时,f′(x)<0,函数y=f(x)单调递减,x∈(2,+∞)时,f′(x)>0,函数y=f(x)单调递增.所以f(x)的单调递减区间为(0,2],单调递增区间为[2,+∞).(2)由(1)知,k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=ex-kx,x∈[0,+∞).因为g′(x)=ex-k=ex-elnk,当0<k≤1时,当x∈(0,2)时,g′(x)=ex-k>0,y=g(x)单调递增.故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减.x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增.所以函数y=g(x)的最小值为g(lnk)=k(1-lnk).函数f(x)在(0,2)内存在两个极值点当且仅当解得e<k<,综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:52:32 页数:5
价格:¥3 大小:23.73 KB
文章作者:U-336598

推荐特供

MORE